The correct answer you should be looking for is complementary. :)
Answer:
D
Explanation:
<em>The correct answer would be in the axle of the wheels while you ride your bicycle.</em>
Options A, B, and C requires that the forces of friction is increased in order to have more control.
However, option D requires that there is a minimal frictional force in the axle of the wheels of a bicycle while riding so that a little effort would be required to keep the bicycle moving.
<u>The lesser the friction, the lower the effort that would be needed to keep the bicycle moving and vice versa.</u>
The bouyancy force is:
Since the wood-lead system is completely submerged, the bouyancy force
is FB = ĎwgVl + ĎwgVb, where Ďw is the density of water,Vl
is the volume of
the piece of lead and Vb is the volume of the wooden block. The weight of the
combined lead and wooden block is: W = ĎlgVl + ĎbgVb. Since the system is
in equilibrium, the bouyancy force must be equal to the total weight:
ĎwgVl + ĎwgVb = ĎlgVl + ĎbgVb
now we can solve for the volume of lead:
ĎwgVl â’ ĎlgVl = ĎbgVb â’ ĎwgVb
Vl(Ďw â’ Ďl) = Vb(Ďb â’ Ďw)
Vl =
Ďbâ’Ďw
Ďwâ’Ďl
Vb
Now we substitute the values for the density of lead Ďl = 11.3 Ă— 103kg/m3 ,
the density of the wood and the density of water Ďw = 1000kg/m3
. We get:
Vl =
600â’1000
1000â’11300
(0.6m Ă— 0.25m Ă— 0.08m) = 4.66 Ă— 10â’4m3