Answer:
Check the attached image
Explanation:
To solve the problem for time you will have to use the formula for time, t = d/s which means time equals distance divided by speed.
Kindly check the attached image below for the step by step explanation to the question.
Supposing the runner is condensed to a point and moves upward at 2.2 m/s.
It takes a time = 2.2/g = 2.2/9.8 = 0.22 seconds to increase to max height.
Now looking at this condition in opposite - that is the runner is at max height and drops back to earth in 0.22 s (symmetry of this kind of motion).
From what height does any object take 0.22 s to fall to earth (supposing there is no air friction)?
d = 1/2gt²= (0.5)(9.8)(0.22)²= 0.24 m
Answer:
1.551×10^-8 Ωm
Explanation:
Resistivity of a material is expressed as shown;.
Resistivity = RA/l
R is the resistance of the material
A is the cross sectional area
l is the length of the wire.
Given;
R = 0.0310 Ω
A = πd²/4
A = π(2.05×10^-3)²/4
A = 0.000013204255/4
A = 0.00000330106375
A = 3.30×10^-6m
l = 6.60m
Substituting this values into the formula for calculating resistivity.
rho = 0.0310× 3.30×10^-6/6.60
rho = 1.023×10^-7/6.60
rho = 1.551×10^-8 Ωm
Hence the resistivity of the material is 1.551×10^-8 Ωm
Power grid
All the poles and wires you see along the highway and in front of your house are called the electrical transmission and distribution system. Today, generating stations all across the country are connected to each other through the electrical system (sometimes called the "power grid").
Answer:
a) KE = 888.26J
b) N = 294.5 turns
Explanation:
For the kinetic energy:

The inertia is:

So, the kinetic energy will be:

Now, friction force is:
Ff = μ*N = 0.80*5N = 4N
The energy balance would be:
Kf - Ko = Wf where Kf=0; Ko = 888.26J; and Wf is the work done by friction force.
Wf = -Ff*d = -Ff*N*2*π*R where N is the amount of turns it gives.
Replacing these values into the energy balance:
0-888.26=-4*N*2*π*0.12
-888.26=-0.96*π*N
N=294.5 turns