I will solve your system by substitution.<span><span>x=<span>−2</span></span>;<span>y=<span><span><span>23</span>x</span>+3</span></span></span>Step: Solve<span>x=<span>−2</span></span>for x:Step: Substitute<span>−2</span>forxin<span><span>y=<span><span><span>23</span>x</span>+3</span></span>:</span><span>y=<span><span><span>23</span>x</span>+3</span></span><span>y=<span><span><span>23</span><span>(<span>−2</span>)</span></span>+3</span></span><span>y=<span>53</span></span>(Simplify both sides of the equation)
Answer:<span><span>x=<span>−<span><span>2<span> and </span></span>y</span></span></span>=<span>5/3
<span>
so the answer is B (the second choice)
(Hope it helped ^_^)
</span></span></span>
Circumference =

When you plug that in you should have

Solve that and you have your answer(: I would recommend rounding to the nearest hundreth
Answer:
372
There are already 3 terms. So, now you have to find the 30th term.
The difference of 30 - 3 is 27. Now, since you add 9 for every term, multiply it by 27.
27 x 9 = 243.
The third term is 29. So you add 29.
Your answer will be 372. Hope it helps.
Answer:
ans=13.59%
Step-by-step explanation:
The 68-95-99.7 rule states that, when X is an observation from a random bell-shaped (normally distributed) value with mean
and standard deviation
, we have these following probabilities



In our problem, we have that:
The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 53 months and a standard deviation of 11 months
So 
So:



-----------



-----
What is the approximate percentage of cars that remain in service between 64 and 75 months?
Between 64 and 75 minutes is between one and two standard deviations above the mean.
We have
subtracted by
is the percentage of cars that remain in service between one and two standard deviation, both above and below the mean.
To find just the percentage above the mean, we divide this value by 2
So:

The approximate percentage of cars that remain in service between 64 and 75 months is 13.59%.