Answer:
1.492*10^14 electrons
Explanation:
Since we know the mass of each balloon and the acceleration, let’s use the following equation to determine the total force of attraction for each balloon.
F = m * a = 0.012 * 1.9 = 0.0228 N
Gravitational forces are negligible
Charge force = 9 * 10^9 * q * q ÷ 225
= 9 * 10^9 * q^2 ÷ 225 = 0.0228
q^2 = 5.13 ÷ 9 * 10^9
q = 2.387 *10^-5
This is approximately 2.387 *10^-5 coulomb of charge. The charge of one electron is 1.6 * 10^-19 C
To determine the number of electrons, divide the charge by this number.
N =2.387 *10^-5 ÷ 1.6 * 10^-19 = 1.492*10^14 electrons
B is the correct answer . That make the most sense
Answer:
I'm learning physics too, mabye we can learn together. by the way, the are 2 very good apps with physics : "khan academy" and "crash course"
Answer:
Velocity is the rate at which the position changes. The average velocity is the displacement or position change (a vector quantity) per time ratio.
Hope this helps! ^-^
Answer:
1.1259*10^9 Newton per Columb
Explanation:
the magnitude of the electric field intensity can be calculated using the expresion below;
E=Kq/r^2
Where k= constant
q= electric charge
r=distance= 2cm= 20*10^-2m( we convert to m for unit consistency
:,K=59*10^9 Columb
If we substitute the value into above formula we have
E=(9*10^9)*(5*10^-3)/(20*10^-2)^2
=1.1259*10^9 Newton per Columb
Therefore,the magnitude of the electric field intensity in vacuum at a distance of 20 cm is 1.1259*10^9 Newton per Columb