Answer:
Step-by-step explanation:
distance = rate times time, so
            
            distance
time = --------------
                rate
Here the distance is 40 km and the rate is x.  Then
               40 km
time = --------------  =  (40/x) hr
              x km/hr
If the speed is reduced by 2 km/hr, we get:
               40 km                                            40 km                  40
time = -------------------------------  or time = ----------------------- = --------- hr
              (x km/hr - 2 km/hr)                      (x - 2) (km/hr)       x - 2 
The difference between the times is:
  40          40
-------- - --------- = 1 hr          Solve this for the original speed, x
 x - 2         x
40x - 40x + 80                                80
-----------------------  =  1 hr     or     ------------ = 1     or 80 = x^2 - 2x
      x(x - 2)                                     x(x - 2)
Rewriting this in standard quadratic form:  x^2 - 2x - 80 = 0
Here a = 1, b = -2 and c = -80, and so the discriminant b^2 - 4ac is:
(-2)^2 - 4(1)(-80) = 324
The solutions are:
     
       -(-2) ± √324       2 ± 18
x = -------------------- = ------------ = 1 ± 9, or 10 (discard the other root)
               2                      2
The original speed was 10 km/hr