For both of them, used the balanced equation and it’s mole ratio to convert whatever you need to into moles. See the attacked work.
1) D 5 mols
2) A 0.55 mols
The phase change in which the water molecules become most orderly is the freezing. This is the process of changing water as liquid to its solidified form. The process of freezing is an exothermic which means that for this to occur, heat should be removed from the system.
Answer:
1
Explanation:
Using the Rydberg formula as:

where,
λ is wavelength of photon
R = Rydberg's constant (1.097 × 10⁷ m⁻¹)
Z = atomic number of atom
n₁ is the initial final level and n₂ is the final energy level
For Hydrogen atom, Z= 1
n₂ = 2
Wavelength = 410.1 nm
Also,
1 nm = 10⁻⁹ m
So,
Wavelength = 410.1 × 10⁻⁹ m
Applying in the formula as:

Solving for n₁ , we get
n₁ ≅ 1
The concentration of the HCl solution is 0.72 M.
<h3>How do we calculate the concentration?</h3>
Concentration of the required solution by the use of the known concentration solution will be determine by using the below equation as:
M₁V₁ = M₂V₂, where
- M₁ & V₁ are the molarity and volume of the HCl solution.
- M₂ & V₂ are the molarity and volume of the NaOH solution.
On putting values in the above equation, we get
M₁ = (1)(0.018) / (0.025) = 0.72 M
Hence required concentration of HCl is 0.72M.
To know kore about molarity, visit the below link:
brainly.com/question/24305514
#SPJ1
Answer:
Refer to your periodic table. Lewis dot structures are based off the number of valence electrons an atom has.
Looking at the compounds, we can see that Gallium has three valence electrons in its outer shell and oxygen has six. Oxygen and Gallium are going to share electrons with one another, making a V shape in their diagram.
One Oxygen would make a double bond with a Gallium, leaving one valence electron to another oxygen. That oxygen takes that Final electron. It now has 7 in its outer shell. The remaining Gallium and Oxygen do the same double bond as the one before, leaving the 7 valence electron oxygen with one more electron.