Tin is Sn, atomic number 47 is Silver, Mass of sodium is 22.9 u
At terminal velocity, drag force becomes equal to weight. Therefore:
weight = bv²
0.0023 x 9.81 = b x 9.1²
b = 2.72 x 10⁻⁴
To solve this problem it is necessary to apply the kinematic equations of motion for speed and distance, as well as the concepts related to kinetic energy.
The change in the height of a body subject to gravity is given by

Where
h = Height
g =Gravity
t = time
Replacing with our values we have that the time is



From speed as a function of change between acceleration and time we have then that after 2.6 seconds the speed would be



The kinetic energy would be given by



Therefore the kinetic energy after 2.6s is 1070.16J
<h2>
Answer: as mass increases, the wave nature of matter is less easy to observe.</h2>
At the beginning of the 20th century the French physicist Louis De Broglie proposed the existence of matter waves, that is to say that <u>all matter has a wave associated with it.</u>
In this sense, the de Broglie wavelength
is given by the following formula:
(1)
Where:
is the Planck constant
is the momentum of the atom, which is given by:
(2)
Where:
is the mass
is the velocity
Substituting (2) in (1):
is inversely proportional to
).
Therefore, if the wavelength decreases the wave nature of matter is less easy to observe.
The other options are incorrect because:
a) as
increases
decreases and the particle nature matter becomes more evident
b) as
decreases
increases and the wave nature matter becomes more evident
c) There is also a relation between the wavelength and the energy
:

So, as energy increases, the particle nature matter becomes more evident and the wave nature of matter becomes harder to observe
Answer:
w = 0.173 N
Explanation:
The weigh of any object is computed by multiplying its mass to the acceleration of gravity, so we need to find the gravity on that planet in order to compute the weigh we want.
The ball has a mass of 0.1 kg and its released from a height of 10 m, therefore it is in a free fall motion with gravity acting as a constant acceleration on the body, we can use the equations for free fall movement in order to determine the value for this acceleration:
y(t) = v_0 * t + y_0 - 0.5 * g * t^2
y(t) is the position in the end of the movement, when t = 3.4 s, so y(t) = 0 m.
v_0 is the initial velocity, in this case v_0 = 0 m/s.
y_0 is the initial position of the ball, in this case it is 10 m.
g is the gravity that we want to know.
Applying these values in the equation we have:
0 = 0*(3.4) + 10 - 0.5*g*(3.4)^2
0 = 10 - 0.5*11.56*g
0 = 10 -5.78*g
5.78*g = 10
g = 1.73 m/s^2
Then we can use this value to find out the weigh of the ball in that planet:
w = g*m = 0.1*1.73 = 0.173 N