Answer: 0.258 N
Explanation:
As the density of the object is much less than the density of water, it’s clear that the buoyant force, is greater than the weight of the object, which means that in normal conditions, it would float in water.
So, in order to get the ball submerged in water, we need to add a downward force, that add to the weight, in order to compensate the buoyant force, as follows:
F = Fb – Fg
Fb= δH20* 4/3*π*(d/2)³ * g
Fg = δb* 4/3*π*(d/2)³ *g
F= (δH20- δb) * 4/3*π*(d/2)³*g
Replacing by the values of the densities, and the ball diameter, we finally get:
F= 0.258 N
Answer:
Heat energy required (Q) = 3,000 J
Explanation:
Find:
Mass of water (M) = 200 g
Change in temperature (ΔT) = 15°C
Specific heat of water (C) = 1 cal/g°C
Find:
Heat energy required (Q) = ?
Computation:
Q = M × ΔT × C
Heat energy required (Q) = Mass of water (M) × Change in temperature (ΔT) × Specific heat of water (C)
Heat energy required (Q) = 200 g × 15°C × 1 cal/g°C
Heat energy required (Q) = 3,000 J
Answer:B 20 newtons opposite to the direction of the applied force
Explanation:
Answer:
The central blue square in between the lower pair of magnet has the least force of repulsion.
Explanation:
We can explain this using the dual nature of magnets.
Each magnet must have two poles namely:
-North pole
-South pole
We assume that the magnetic lines of forces enters from south pole and leaves from the north pole.
When brought together, like poles repel each other while opposite poles attract each other.
In the picture, the lower two magnets have opposite poles facing each other, hence the force of repulsion is minimum there and the force of attraction is maximum.