Answer : The angle between the string and the horizontal is 30 degrees
Explanation: Imagine this a a triangle where the length of the string (200m) is the hypotenuse and the height of the kite is the opposite side (100m) .
Let the angle between the string and the horizontal be theta.
Now sin (Theta) = opposite side/hypotenuse
= 100/200 = 1/2
Therefore Theta = Sin ⁻¹ ( 1/2 )
Theta = 30 degrees
Kinetic energy lost in collision is 10 J.
<u>Explanation:</u>
Given,
Mass,
= 4 kg
Speed,
= 5 m/s
= 1 kg
= 0
Speed after collision = 4 m/s
Kinetic energy lost, K×E = ?
During collision, momentum is conserved.
Before collision, the kinetic energy is

By plugging in the values we get,

K×E = 50 J
Therefore, kinetic energy before collision is 50 J
Kinetic energy after collision:


Since,
Initial Kinetic energy = Final kinetic energy
50 J = 40 J + K×E(lost)
K×E(lost) = 50 J - 40 J
K×E(lost) = 10 J
Therefore, kinetic energy lost in collision is 10 J.
Answer:
The answer is C because they have to be close to be able to interact
The answer is (A) hope it helps
Answer:
Belgium
France
Luxembourg
Explanation:
These are the ones that are in the High Productivity chart, but not in the HDI chart