Answer:
So your answer is x=0.
Step-by-step explanation:
Use the following formula valid fo every polyhedron.
v-e+f=2
<span>
Search for Euler characteristic, or Euler-Poicare characteristic for more depth about this formula </span>
v= number of vertices
e=number of edges
f=number of faces
<span>You get v=13
<span>I hope my answer has come to your help. Thank you for posting your question here in </span>Brainly<span>. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!</span>
</span>
Answer:
infinite
Step-by-step explanation:
name two, and then find a third in between them.
you can repeat that as often as you want.
Answer:u=19/7 or 2.714286 or 2 5/7
Step-by-step explanation:
−14u+32=−6
Step 1: Subtract 32 from both sides.
-14u+32-32=-6-32
-14u=-38
Step 2: Divide both sides by -14.
-14u/-14=-38/-14
U=19/7
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2