Answer:
Step-by-step explanation:
Assuming the rate of increase in the cost of tuition fee per year is linear. We would apply the formula for determining the nth term of an arithmetic sequence which is expressed as
Tn = a + (n - 1)d
Where
a represents the first term of the sequence.
d represents the common difference.
n represents the number of terms in the sequence.
From the information given,
a = $20500(amount in 2000)
From 2000 to 2018, the number of terms is 19, hence,
n = 19
T19 = 454120
Therefore,
454120 = 20500 + (19 - 1)d
454120 - 20500 = 18d
18d = 433620
d = 433620/18
d = 24090
Therefore, the equation that can be used to find the tuition y for x years after 2000 is expressed as
y = 20500 + 24090(x - 1)
To to estimate the tuition at this college in 2020, the number of terms between 2000 and 2020 is 21, hence
x = 21
y = 20500 + 24090(21 - 1)
y = 20500 + 481800
y = $502300
Answer:
Triangle OBA is a right angled triangle since a radius meets a tangent at an angle of 90°..So use pythogrus theorem to find the radius.
Answer:
- starting balance: $636,215.95
- total withdrawals: $1,200,000
- interest withdrawn: $563,784.05
Step-by-step explanation:
a) If we assume the annual withdrawals are at the beginning of the year, we can use the formula for an annuity due to compute the necessary savings.
The principal P that must be invested at rate r for n annual withdrawals of amount A is ...
P = A(1+r)(1 -(1 +r)^-n)/r
P = $60,000(1.08)(1 -1.08^-20)/0.08 = $636,215.95
__
b) 20 withdrawals of $60,000 each total ...
20×$60,000 = $1,200,000
__
c) The excess over the amount deposited is interest:
$1,200,000 -636,215.95 = $563,784.05
First you must find the tenths place
7 .8 3 9
O T H Th
So, the 8 is in the tenths place. Now look at the number to it's right, 3.
Since 3 is less than 5, you just turn everything behind the 8, including the 3, into a zero, giving you 7.800 or 7.8
Answer:20
Step-by-step explanation:
x/24=5/6
multiply both sides by 24
x=(5*24)/6
simplify
x=5*4
x=20