1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IceJOKER [234]
2 years ago
11

3.) Light travels at a speed of 1.25 x 107 miles per minute. Pluto's average distance from the

Mathematics
1 answer:
daser333 [38]2 years ago
3 0

I have no idea whether those numbers are correct, and I'm not gonna bother looking them up.

But you gave us a speed and a distance, and you asked for a time.

We can just go ahead and use the formula:  Time = (distance) / (speed) .

<em>IF</em> your numbers are true, then

Time = (distance) / (speed)

Time = (3.55 x 10⁹ mi) / (1.25 x 10⁷ mi/min)

Time =  (3.55 x 10⁹ / 1.25 x 10⁷) minutes

Time =  2.84 x 10² minutes

<em>Time = 284 minutes</em>

Time = 4 hours 44 minutes

You might be interested in
Which of the following is not part of the job search preparation checklist?
castortr0y [4]
The answer is Self assessment
5 0
3 years ago
Read 2 more answers
If x = 6 and y=5, find y when x = 3
Annette [7]

Answer:

If x=6 and y=5 and we are to find y when x=3.

it will be 6=5,3=y....

5×3=6×y.

y=15/6=2.5 or 2 whole number 1/2.

This is the answer I hope it helps

8 0
3 years ago
What is the completely factored form of of this polynomial 81x^4 - 16y^4​
Tasya [4]

Step-by-step explanation:

81x⁴ - 16y⁴

(9x²)² - (4y²)²

(9x² + 4y²)(9x² - 4y²)

(9x² + 4y²)(3x + 2y)(3x - 2y)

5 0
2 years ago
Explain why 256 + 4 is equivalent to (200 + 4) + (40+4) + (164)​
laiz [17]

The expression 256 + 4 is equivalent to (200 + 4) + (40+4) + (16+4) according to distributive and commutative property of addition.

Given the expression 256 + 4. This can be solved using the partial sum expressed as:

256 + 4

256 + 4

= (200 + 40 + 16) + 4

According to the commutative property, A+B = B+A

The arrangement does not affect the result. Hence;

  • (200 + 40 + 16) + 4 = 4 +  (200 + 40 + 16)

Using the distributive law;

  • 4 +(200 + 40 + 16) = (200 + 4) + (40 + 4) + (16 + 4)

Hence the expression 256 + 4 is equivalent to (200 + 4) + (40+4) + (16+4) according to distributive and commutative property of addition.

​Learn more on  partial sum  here: brainly.com/question/6958503

4 0
2 years ago
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
Other questions:
  • A show is on Friday, Saturday and Sunday
    13·1 answer
  • Round 6609707 rounded to the nearest ten thousand
    8·1 answer
  • To solve the equation x-9=0,
    10·2 answers
  • The sum of two numbers is -284 One number is 62 less than other find the numbers
    11·1 answer
  • Which answer describes the transformation of f(x)=x2−1 to g(x)=(x+4)2−1 ?
    12·1 answer
  • May somebody help me please and thank you
    12·1 answer
  • Jalyn plans to sell Algebra Nation t-shirts as a fundraiser for a new scholarship initiative. The wholesale t-shirt company char
    12·1 answer
  • If a scale factor between zero and one is used, the dilation will shrink the pre-image.
    13·1 answer
  • PLEASE HELP!! 50 POINTS!<br> Answer the question in the picture.
    12·2 answers
  • Evaluate 17 + 70/x when x = 14.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!