There are commonly used four inequalities:
Less than = <
Greater than = >
Less than and equal = ≤
Greater than and equal = ≥
The inequalities that describe the constraints on the number of each type of hedge trimmer produced are:
x + y ≤ 200
2x + 10y ≤ 1000
<h3>What is inequality?</h3>
It shows a relationship between two numbers or two expressions.
There are commonly used four inequalities:
Less than = <
Greater than = >
Less than and equal = ≤
Greater than and equal = ≥
We have,
Total number of hours = 1000
Total number of trimmers = 200
Let x represent the number of cord-type models,
Let y represent the number of cordless models.
Now,
x + y ≤ 200
2x + 10y ≤ 1000
Thus,
The inequalities that describe the constraints on the number of each type of hedge trimmer produced are:
x + y ≤ 200
2x + 10y ≤ 1000
Learn more about inequalities here:
brainly.com/question/20383699
#SPJ1
Horseshoe crabs are marine and brackish water arthropods. They live primarily in and around shallow coastal waters on soft sands.
Answer:
3.50
Step-by-step explanation:
Answer:

Domain: All Real Numbers
General Formulas and Concepts:
<u>Algebra I</u>
- Domain is the set of x-values that can be inputted into function f(x)
<u>Calculus</u>
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Derivative: ![\frac{d}{dx} [ln(u)] = \frac{u'}{u}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bln%28u%29%5D%20%3D%20%5Cfrac%7Bu%27%7D%7Bu%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = ln(2x² + 1)
<u>Step 2: Differentiate</u>
- Derivative ln(u) [Chain Rule/Basic Power]:

- Simplify:

- Multiply:

<u>Step 3: Domain</u>
We know that we would have issues in the denominator when we have a rational expression. However, we can see that the denominator would never equal 0.
Therefore, our domain would be all real numbers.
We can also graph the differential function to analyze the domain.
Answer:
You times pi by the diameter
first set of answers are
1. 5.1
2 56.5
3 25.1
4 34.5
5 9.4
You times pi by r^2
second set of answers are
1 28.3
2 254.3
3 78.5
4 50.2
5 30.2