1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nekit [7.7K]
4 years ago
14

Help solving this problem

Mathematics
1 answer:
amid [387]4 years ago
5 0
2t + 5b = 20
8t + 3b = 29
Multiply the first equation by-4
-8t -20b = -80
8t + 3b = 29
-17b = -51
b = 3
Plug 3 in for b into either equation and solve for t.
2t + 5(3) = 20
2t + 15 = 20
2t = 5
Divide both sides by 2
t = 2.50
You might be interested in
The difference between two numbers is 9. The first number plus twice the other number is 27.Find the two numbers.
vodka [1.7K]
The numbers are 3 and 12. 12 and 3 have a difference of 9 and 3+12+12=27.
4 0
4 years ago
Show with work please.
kolbaska11 [484]

Answer:

$\csc \left(\theta-\frac{\pi }{2}\right)=0.73$

Step-by-step explanation:

The identity you will use is:

$\csc \left(x\right)=\frac{1}{\sin \left(x\right)}$

So,

$\csc \left(\theta-\frac{\pi }{2}\right)$

$\csc \left(\theta-\frac{\pi }{2}\right)=\frac{1}{\sin \left(-\frac{\pi }{2}+\theta\right)}$

Now, using the difference of sin

Note: state that \text{sin}(\alpha\pm \beta)=\text{sin}(\alpha) \text{cos}(\beta) \pm \text{cos}(\alpha) \text{sin}(\beta)

$\csc \left(\theta-\frac{\pi }{2}\right)=\frac{1}{-\cos \left(\theta\right)\sin \left(\frac{\pi }{2}\right)+\cos \left(\frac{\pi }{2}\right)\sin \left(\theta\right)}$

Solving the difference of sin:

$-\cos \left(\theta\right)\sin \left(\frac{\pi }{2}\right)+\cos \left(\frac{\pi }{2}\right)\sin \left(\theta\right)$

-\cos \left(\theta\right) \cdot 1+0\cdot \sin \left(\theta\right)

-\text{cos} \left(\theta\right)

Then,

$\csc \left(\theta-\frac{\pi }{2}\right)=-\frac{1}{\cos \left(\theta\right)}$

Once

\text{sec}(-\theta)=\text{sec}(\theta)

And, \text{sec}(\theta)=-0.73

$-\frac{1}{\cos \left(\theta\right)}=-\text{sec}(\theta)$

$-\frac{1}{\cos \left(\theta\right)}=-(-0.73)$

$-\frac{1}{\cos \left(\theta\right)}=0.73$

Therefore,

$\csc \left(\theta-\frac{\pi }{2}\right)=0.73$

3 0
3 years ago
Help.
Zinaida [17]

Answer:

Eat them. )llllllllllllllllllllllllll)

4 0
3 years ago
Read 2 more answers
20≥8+4.99x please I could get an F.
marin [14]

Answer:

\begin{bmatrix}\mathrm{Solution:}\:&\:x\le \frac{1200}{499}\:\\ \:\mathrm{Decimal:}&\:x\le \:2.40480\dots \\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:\frac{1200}{499}]\end{bmatrix}

Step-by-step explanation:

20\ge \:8+4.99x\\Switch\:sides\\8+4.99x\le \:20\\\mathrm{Multiply\:both\:sides\:by\:}100\\8\cdot \:100+4.99x\cdot \:100\le \:20\cdot \:100\\Refine\\800+499x\le \:2000\\\mathrm{Subtract\:}800\mathrm{\:from\:both\:sides}\\800+499x-800\le \:2000-800\\Simplify\\499x\le \:1200\\\mathrm{Divide\:both\:sides\:by\:}499\\\frac{499x}{499}\le \frac{1200}{499}\\Simplify\geq \\x\le \frac{1200}{499}

5 0
3 years ago
What are the coordinates of the point (1, –6) after a counter clockwise rotation of 90° about the origin?
IgorLugansk [536]
(-6 ,-1) is the correct answer
4 0
3 years ago
Read 2 more answers
Other questions:
  • Which mathematical figure has length but no beginning or end? A. a point B.a segment C.a line D.a ray
    15·1 answer
  • On losing an electron, an atom's mass_______
    8·1 answer
  • Solve each equation and check your solution.
    7·1 answer
  • The original price is 50. the discount is 15%. what is the new price
    5·1 answer
  • Point C is located at (10, 3) and Point D is located at (4, 3). What is the horizontal distance between the two points? Explain.
    13·1 answer
  • Xcube + 4x+2 divisible by x+2
    15·2 answers
  • What is the value of x to the nearest tenth?<br> 43°<br> 12<br> Х
    5·1 answer
  • What is (0.54)⋅(3.8)=
    9·2 answers
  • 4. What are the coordinates of the x-intercept for the equation y= -1x + 3?
    9·1 answer
  • Here is a list of numbers 12 11 19 16 32 15 13​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!