Answer:
SO THE 1309 IS THE NEW 1 1(239) THE ANSWER OF THAT IS IN THE LINK MP MODULE .COM
Using slope-intercept form, y = mx + b where m = slope and b = y-intercept:
We know our slope is -6. This can be interpreted as -6/1, which rise-over-run-wise, means that when y changes by 6, x changes inversely by 1.
To find that y-intercept, though, we need to find the value of y when x = 0.
Use our point (-9, -3) to find this...
We want to add 9 to x so that it becomes 0.
According to our slope, this means subtracting 54 from y.
Our y-intercept is at (0, -57), with -57 being the value of b we put in our equation.
![\boxed{y=-6x-57}](https://tex.z-dn.net/?f=%5Cboxed%7By%3D-6x-57%7D)
You could also just use point-slope form:
y - y¹ = m(x - x¹)
y - (-3) = -6(x - (-9))
y + 3 = -6(x + 9)
And convert to slope-intercept if you want:
y + 3 = -6x - 54
y = -6x - 57
10% of 65
Of means multiply
=0.1 x 65
=6.5
Or you can use another way which is (part/whole) *(percent/100)
Whole=65
Percent=10
And part(part of 65)=unknown
(X/65)* (10/100)
Cross multiply
x= 6.5
So 10% of 65 is 6.5
Answer:
Any set of data that satisfies the 5-Number summary: 1,6,12,16 and 19 can be represented with the box plot.
Step-by-step explanation:
<u>Interpreting Box Plots</u>
A box plot is used to present the 5-Number summary of a set of data.
The 5-Number summary consists of the following in their order of appearance on the box plot.
- Minimum Value
- First Quartile,
![Q_1](https://tex.z-dn.net/?f=Q_1)
- Median,
![Q_2](https://tex.z-dn.net/?f=Q_2)
- Third Quartile,
![Q_3](https://tex.z-dn.net/?f=Q_3)
- Maximum Value
In the box plot, the following rules applies
- The whisker starts from the minimum value and ends at the first quartile.
- The box starts at the first quartile and ends at the third quartile. There is a vertical line inside the box which shows the median.
- The end whisker starts at the third quartile and ends at the maximum value.
Using these, we interpret the given box plot
A left whisker extends from 1 to 6.
- Minimum Value=1
- First Quartile =6
The box extends from 6 to 16 and is divided into 2 parts by a vertical line segment at 12.
- Median=12
- Thrid Quartile=16
The right whisker extends from 16 to 19.
Therefore any set of data that satisfies the 5-Number summary: 1,6,12,16 and 19 can be represented with the box plot.
Answer:
6.36l
Step-by-step explanation:
We compute first the volume:
V=pi×h/3×(R²+r²+rR), where h=20cm is the height, R=24/2=12cm is the top radius, r=16/2=8cm is the bottom radius.
We get: V=pi×20/3(12²+8²+12×8)=
20×pi/3(144+64+96)cm³
V=20×pi/3×304=6363.73cm³
In dm³ we have (divide by 1000) V=6.36dm³
By definition, 1dm³=1l, so the capacity is 6.36l