1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Soloha48 [4]
3 years ago
6

How would I solve 16x^4-41x^2+25=0 ???

Mathematics
2 answers:
hichkok12 [17]3 years ago
8 0
16x⁴ - 41x² + 25 = 0
16x⁴ - 16x² - 25x² + 25 = 0
16x²(x²) - 16x²(1) - 25(x²) + 25(1) = 0
16(x² - 1) - 25(x² - 1) = 0
(16x² - 25)(x² - 1) = 0
(16x² + 20x - 20x - 25)(x² - x + x - 1) = 0
(4x(4x) + 4x(5) - 5(4x) - 5(5))(x(x) - x(1) + 1(x) - 1(1)) = 0
(4x(4x + 5) - 5(4x + 5))(x(x - 1) + 1(x - 1)) = 0
(4x - 5)(4x + 5)(x + 1)(x - 1) = 0
4x - 5 = 0  or  4x + 5 = 0  or  x + 1 = 0  or  x - 1 = 0
<u>    + 5 + 5</u>       <u>      - 5  - 5</u>      <u>    - 1  - 1</u>       <u>   + 1 + 1</u>
     <u>4x</u> = <u>5</u>              <u>4x</u> = <u>-5</u>          x = -1             x = 1
      4     4               4      4
       x = 1¹/₄            x = -1¹/₄

The solution set is equal to {(1¹/₄, -1¹/₄, -1, 1)}.
sveticcg [70]3 years ago
3 0
16{ x }^{ 4 }-41{ x }^{ 2 }+25=0

{ x }^{ 4 }={ ({ x }^{ 2 }) }^{ 2 }\\ \\ 16{ ({ x }^{ 2 }) }^{ 2 }-41{ x }^{ 2 }+25=0



First of all to make our equation simpler, we'll equal x^{2} to a variable like 'a'.

So,

{ x }^{ 2 }=a

Now let's plug x^{2} 's value (a) into the equation.

16{ ({ x }^{ 2 }) }^{ 2 }-41{ x }^{ 2 }+25=0\\ \\ { x }^{ 2 }=a\\ \\ 16{ (a) }^{ 2 }-41{ a }+25=0

Now we turned our equation into a quadratic equation.

(The variable 'a' will have a solution set of two solutions, but 'x' , which is the variable of our first equation will have a solution set of four solutions since it is a quartic equation (<span>fourth-degree <span>equation) )

Let's solve for a.

The formula used to solve quadratic equations ;

\frac { -b\pm \sqrt { { b }^{ 2 }-4\cdot t\cdot c }  }{ 2\cdot t }

The formula is used in an equation formed like this :
</span></span>
t{ x }^{ 2 }+bx+c=0

In our equation,

t=16 , b=-41 and c=25

Let's plug the values in the formula to solve.

t=16\quad b=-41\quad c=25\\ \\ \frac { -(-41)\pm \sqrt { -(41)^{ 2 }-4\cdot 16\cdot 25 }  }{ 2\cdot 16 } \\ \\ \frac { 41\pm \sqrt { 1681-1600 }  }{ 32 } \\ \\ \frac { 41\pm \sqrt { 81 }  }{ 32 } \\ \\ \frac { 41\pm 9 }{ 32 }

So the solution set :

\frac { 41+9 }{ 32 } =\frac { 50 }{ 32 } \\ \\ \frac { 41-9 }{ 32 } =\frac { 32 }{ 32 } =1\\ \\ a\quad =\quad \left\{ \frac { 50 }{ 32 } ,\quad 1 \right\}

We found a's value.

Remember,

{ x }^{ 2 }=a

So after we found a's solution set, that means.

{ x }^{ 2 }=\frac { 50 }{ 32 }

and

{ x }^{ 2 }=1

We'll also solve this equations to find x's solution set :)

{ x }^{ 2 }=\frac { 50 }{ 32 } \\ \\ \frac { 50 }{ 32 } =\frac { 25 }{ 16 } \\ \\ { x }^{ 2 }=\frac { 25 }{ 16 } \\ \\ \sqrt { { x }^{ 2 } } =\sqrt { \frac { 25 }{ 16 }  } \\ \\ x=\quad \pm \frac { 5 }{ 4 }

{ x }^{ 2 }=1\\ \\ \sqrt { { x }^{ 2 } } =\sqrt { 1 } \\ \\ x=\quad \pm 1

So the values x has are :

\frac { 5 }{ 4 } , -\frac { 5 }{ 4 } , 1 and -1

Solution set :

x=\quad \left\{ \frac { 5 }{ 4 } \quad ,\quad -\frac { 5 }{ 4 } \quad ,\quad 1\quad ,\quad -1 \right\}

I hope this was clear enough. If not please ask :)



You might be interested in
Jenny can type 1,200 words in just 15 minutes. How many words can she types in anhour?
seropon [69]
She can type 4,800 words in one hour.
7 0
3 years ago
Three times the sum of a number and 3 is -18 (equation )
NARA [144]
So 3 times x+3 is -18 so

3(x+3)=-18
so distribute
3x-9=-18
add 9 to both sides
3x=-27
divide both sides by 3
x=-9
8 0
3 years ago
I am stuck on this question. Could someone please help?​
kkurt [141]

Step-by-step explanation:

-inf<= x <= inf

-inf<= y <= 4

It is a function

8 0
3 years ago
Which is the iterative rule for the sequence 3, 8, 13, 18, 23, . . . . ?
Nostrana [21]

Answer:

B) 5n – 2

Step-by-step explanation:

Given: 3, 8, 13, 18, 23, ....

a_{1}=3=5(1)-2\\a_{2}=8=5(2)-2\\a_{3}=13=5(3)-2\\a_{4}=18=5(4)-2\\a_{5}=23=5(5)-2

For the nth term, a_{n}=5n-2

Hence the iterative rule for the sequence 3, 8, 13, 18, 23, ... is 5n – 2.

8 0
3 years ago
WILL MAKE BRAINLIEST! ANSWER AND ILY<br><br> what are the slopes of each line?
Crazy boy [7]

Answer:

Top left is A

Top right is B

Bottom left is D

Bottom right is A

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Which phrase describes the variable expression 11 • x ?
    9·1 answer
  • Find the zeros of the function.<br><br> f(x) = 9(x + 2)(x − 9.5)
    8·1 answer
  • What is the volume of a circular cylinder with a radius of 6mm and a height of 10mm
    5·1 answer
  • Answer to this problem -7(a+11)+4=3
    13·1 answer
  • What is the number written in standard notation?
    7·2 answers
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
    9·1 answer
  • John borrows $3000 to
    9·1 answer
  • Point AAA is at {(-7,5)}(−7,5)left parenthesis, minus, 7, comma, 5, right parenthesis and point CCC is at {(5,-1)}(5,−1)left par
    5·1 answer
  • Find the real solution(s) of the following equation. n to the power of 3 =64
    12·1 answer
  • A rectangular prism is 12 inches long, 9 inches wide, and 6 inches high. What is the volume of the prism?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!