1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Soloha48 [4]
3 years ago
6

How would I solve 16x^4-41x^2+25=0 ???

Mathematics
2 answers:
hichkok12 [17]3 years ago
8 0
16x⁴ - 41x² + 25 = 0
16x⁴ - 16x² - 25x² + 25 = 0
16x²(x²) - 16x²(1) - 25(x²) + 25(1) = 0
16(x² - 1) - 25(x² - 1) = 0
(16x² - 25)(x² - 1) = 0
(16x² + 20x - 20x - 25)(x² - x + x - 1) = 0
(4x(4x) + 4x(5) - 5(4x) - 5(5))(x(x) - x(1) + 1(x) - 1(1)) = 0
(4x(4x + 5) - 5(4x + 5))(x(x - 1) + 1(x - 1)) = 0
(4x - 5)(4x + 5)(x + 1)(x - 1) = 0
4x - 5 = 0  or  4x + 5 = 0  or  x + 1 = 0  or  x - 1 = 0
<u>    + 5 + 5</u>       <u>      - 5  - 5</u>      <u>    - 1  - 1</u>       <u>   + 1 + 1</u>
     <u>4x</u> = <u>5</u>              <u>4x</u> = <u>-5</u>          x = -1             x = 1
      4     4               4      4
       x = 1¹/₄            x = -1¹/₄

The solution set is equal to {(1¹/₄, -1¹/₄, -1, 1)}.
sveticcg [70]3 years ago
3 0
16{ x }^{ 4 }-41{ x }^{ 2 }+25=0

{ x }^{ 4 }={ ({ x }^{ 2 }) }^{ 2 }\\ \\ 16{ ({ x }^{ 2 }) }^{ 2 }-41{ x }^{ 2 }+25=0



First of all to make our equation simpler, we'll equal x^{2} to a variable like 'a'.

So,

{ x }^{ 2 }=a

Now let's plug x^{2} 's value (a) into the equation.

16{ ({ x }^{ 2 }) }^{ 2 }-41{ x }^{ 2 }+25=0\\ \\ { x }^{ 2 }=a\\ \\ 16{ (a) }^{ 2 }-41{ a }+25=0

Now we turned our equation into a quadratic equation.

(The variable 'a' will have a solution set of two solutions, but 'x' , which is the variable of our first equation will have a solution set of four solutions since it is a quartic equation (<span>fourth-degree <span>equation) )

Let's solve for a.

The formula used to solve quadratic equations ;

\frac { -b\pm \sqrt { { b }^{ 2 }-4\cdot t\cdot c }  }{ 2\cdot t }

The formula is used in an equation formed like this :
</span></span>
t{ x }^{ 2 }+bx+c=0

In our equation,

t=16 , b=-41 and c=25

Let's plug the values in the formula to solve.

t=16\quad b=-41\quad c=25\\ \\ \frac { -(-41)\pm \sqrt { -(41)^{ 2 }-4\cdot 16\cdot 25 }  }{ 2\cdot 16 } \\ \\ \frac { 41\pm \sqrt { 1681-1600 }  }{ 32 } \\ \\ \frac { 41\pm \sqrt { 81 }  }{ 32 } \\ \\ \frac { 41\pm 9 }{ 32 }

So the solution set :

\frac { 41+9 }{ 32 } =\frac { 50 }{ 32 } \\ \\ \frac { 41-9 }{ 32 } =\frac { 32 }{ 32 } =1\\ \\ a\quad =\quad \left\{ \frac { 50 }{ 32 } ,\quad 1 \right\}

We found a's value.

Remember,

{ x }^{ 2 }=a

So after we found a's solution set, that means.

{ x }^{ 2 }=\frac { 50 }{ 32 }

and

{ x }^{ 2 }=1

We'll also solve this equations to find x's solution set :)

{ x }^{ 2 }=\frac { 50 }{ 32 } \\ \\ \frac { 50 }{ 32 } =\frac { 25 }{ 16 } \\ \\ { x }^{ 2 }=\frac { 25 }{ 16 } \\ \\ \sqrt { { x }^{ 2 } } =\sqrt { \frac { 25 }{ 16 }  } \\ \\ x=\quad \pm \frac { 5 }{ 4 }

{ x }^{ 2 }=1\\ \\ \sqrt { { x }^{ 2 } } =\sqrt { 1 } \\ \\ x=\quad \pm 1

So the values x has are :

\frac { 5 }{ 4 } , -\frac { 5 }{ 4 } , 1 and -1

Solution set :

x=\quad \left\{ \frac { 5 }{ 4 } \quad ,\quad -\frac { 5 }{ 4 } \quad ,\quad 1\quad ,\quad -1 \right\}

I hope this was clear enough. If not please ask :)



You might be interested in
Ok since no one answered my previous question i don't wanna put to waste so f r ee p oi nts yeah
Zolol [24]

Answer:

yea its jaiashhsjajajsjs

6 0
3 years ago
Read 2 more answers
-4(8r+3) pls answer
luda_lava [24]
<h3>given:</h3>

- 4(8r + 3)

<h3>solution:</h3>

- 4(8r + 3)

=  - 32r - 12

7 0
2 years ago
Read 2 more answers
Which relation is a function?
Usimov [2.4K]

Answer:

The third option is a function

Step-by-step explanation:

A function is a relation in which every x value is paired with exactly one y value, meaning that x values cannot repeat within a relation. The 1st and 4th options have repeating X's, and the 2nd option does not have ordered pairs, only integers.


3 0
4 years ago
Read 2 more answers
What is the sum of 12 – 5i and –3 + 4i?<br> –16 + 63i <br>9 – i <br>9 – 9i <br>15 – 9i
Svetach [21]

Answer:

\boxed{ \bold{ \huge{ \boxed{ \sf{9 - i}}}}}

Step-by-step explanation:

\sf{12 - 5i + ( - 3 + 4i)}

When there is a ( + ) in front of an expression in parentheses, there is no need to change the sign of each term. That means, the expression remains the same. Just remove the parentheses

\longrightarrow{ \sf{12 - 5i - 3 + 4i}}

Collect like terms

\longrightarrow{ \sf{ 12 - 3 - 5i + 4i}}

Subtract 3 from 12

\longrightarrow{ \sf{9 - 5i + 4i}}

Collect like terms

\longrightarrow{ \sf{9 - i}}

Hope I helped!

Best regards! :D

3 0
3 years ago
Read 2 more answers
Find the degree of each algebraic expression
morpeh [17]

Step-by-step explanation:

The degree of an algebraic expression is the largest exponent of the variable present. In expressions with multiple variables, the exponents of each variables are added.

First Expression;

pq: Degree = 1 + 1 = 2

p²q:  Degree = 2 + 1 = 3

p²q²:  Degree = 2 + 2 = 4

The degree of this expression is 4

Second Expression;

2y²z: Degree = 2 + 1 = 3

10yz: Degree = 1 + 1 = 2

The degree of this expression is 3

4 0
3 years ago
Other questions:
  • if it were possible to eat a hamburger every minute of every day without stopping how many years would it take to eat a billion
    14·2 answers
  • Two different isosceles triangle with perimeter for 4a+b
    10·1 answer
  • you plan to spend 3 2/6 hour shopping for the ingredients in packaged all the cooking utensils you plan to spend 2/3 of an hour
    13·1 answer
  • A falcon flying at 200 yards spots a sparrow at a height of 150 yards. The location of the sparrow makes an angle of 40 degrees
    9·1 answer
  • The formula for figuring a​ student's average test score A is A equals = StartFraction p Over t EndFraction p t ​, where p is th
    13·1 answer
  • What is the answer<br> Which inequality represents the graph?
    7·1 answer
  • 1.) Three numbers form a geometric sequence whose common ratio is 0.5. If the first is reduced to 10 more than one quarter its v
    6·1 answer
  • Mary is 1 m 15 cm tall. her friend larry is 1 m 30 cm tall. who is taller and by how much?
    12·2 answers
  • If -2 is the root of the quadratic equation x^2-5x+c=0 <br><br>find the value of c​
    13·1 answer
  • How many integers between 100 and 1000 have both 15 and 18 as factors?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!