12819=
Yx ..................................
Answer: a) √50
b) n = 1 + 7i
Step-by-step explanation:
first, the modulus of a complex number z = a + bi is
IzI = √(a^2 + b^2)
The fact that n is complex does not mean that n doesn't has a real part, so we must write our numbers as:
m = 2 + 6i
n = a + bi
Im + nI = 3√10
Im + n I = √(a^2 + b^2 + 2^2 + 6^2)= 3√10
= √(a^2 + b^2 + 40) = 3√10
a^2 + b^2 + 40 = 3^2*10 = 9*10 = 90
a^2 + b^2 = 90 - 40 = 50
√(a^2 + b^2 ) = InI = √50
The modulus of n must be equal to the square root of 50.
now we can find any values a and b such a^2 + b^2 = 50.
for example, a = 1 and b = 7
1^2 + 7^2 = 1 + 49 = 50
Then a possible value for n is:
n = 1 + 7i
36y + 7 stars are great but I don’t have a bad experience
Answer:
The relation is not a function.
Step-by-step explanation:
Since x=1 is in both y=4 and y=−8, the relation (1,4),(3,2),(5,2),(1,−8),(6,7) is not a function.
Answer:
It has 1 term and a degree of 4.
Step-by-step explanation:
3j⁴k-2jk³+jk³-2j⁴k+jk³
= 3j⁴k-2j⁴k-2jk³+jk³+jk³
= j⁴k
So, in this expression, there is 1 term, and it has a degree of 4.