Besides cell walls, features often found in plant cells but not in animal cells are: <span>· Chloroplast- specialized organelles in which light energy is converted to chemical energy during the photosynthesis(chloroplasts contain chlorophylls a and b-green color of the plant)
</span> <span>· Vacuole-central organelle filled with fluid for storing food (sometimes it is found in animals but rare)</span><span><span>· </span>in animals but rare)</span>
<span><span>· </span>Starch-energy storage of plants (it is glycogen in animals)</span> <span> </span>
Genetics, double helix, cells
Answer:
After 6000 years, approximately 500 atoms of carbon-14 will be left in the femur bone of an animal which had 1000 atoms of carbon-14 when the animal died.
Explanation:
The half-life of a radioactive isotope of an element is the time taken for half the atoms present in a given amount of the element to undergo decay or disintegration. For example, the half-life of carbon-14 isotope is 5730 years. This means that, if there are 100 atoms of carbon-14 present in a given sample of a material, in the next 5730 years, approximately, 50 atoms of carbon-14 will be left in the material.
Since the half-life of radioactive isotopes are constant, these radioactive isotopes are used in the determining the ages of ancient life-forms as well as rocks.
In the given example, after 6000 years, approximately 500 atoms of carbon-14 will be left in the femur bone of an animal which had 1000 atoms of carbon-14 when the animal died.
Answer: When a plant or animal dies, or an animal voids waste products, the initial form of nitrogen is organic. Bacteria and fungi in the soil produce enzymes that convert the organic nitrogen back into inorganic ammonium ions (NH4 +). Ammonium is converted to nitrite ions (NO2 -) by soil bacteria like Nitrosomonas
Explanation: Hope it helps
much love
Brainly plz
:)
Your question isn't the most clear, but I think your answer is rocks, or more specifically phosphorous rich rocks because the phosphorous will mix with the sediments on the river's/lake's ground forming phosphorous rich rocks.
That means that It'll become a phosphate mineral and later become phosphorous again when the minerals weather.
Hope it helped,
BioTeacher101