From what I gather from your latest comments, the PDF is given to be

and in particular, <em>f(x, y)</em> = <em>cxy</em> over the unit square [0, 1]², meaning for 0 ≤ <em>x</em> ≤ 1 and 0 ≤ <em>y</em> ≤ 1. (As opposed to the unbounded domain, <em>x</em> ≤ 0 *and* <em>y</em> ≤ 1.)
(a) Find <em>c</em> such that <em>f</em> is a proper density function. This would require

(b) Get the marginal density of <em>X</em> by integrating the joint density with respect to <em>y</em> :

(c) Get the marginal density of <em>Y</em> by integrating with respect to <em>x</em> instead:

(d) The conditional distribution of <em>X</em> given <em>Y</em> can obtained by dividing the joint density by the marginal density of <em>Y</em> (which follows directly from the definition of conditional probability):

(e) From the definition of expectation:
![E[X]=\displaystyle\int_0^1\int_0^1 x\,f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=4\left(\int_0^1x^2\,\mathrm dx\right)\left(\int_0^1y\,\mathrm dy\right)=\boxed{\frac23}](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E1%5Cint_0%5E1%20x%5C%2Cf_%7BX%2CY%7D%28x%2Cy%29%5C%2C%5Cmathrm%20dx%5C%2C%5Cmathrm%20dy%3D4%5Cleft%28%5Cint_0%5E1x%5E2%5C%2C%5Cmathrm%20dx%5Cright%29%5Cleft%28%5Cint_0%5E1y%5C%2C%5Cmathrm%20dy%5Cright%29%3D%5Cboxed%7B%5Cfrac23%7D)
![E[Y]=\displaystyle\int_0^1\int_0^1 y\,f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=4\left(\int_0^1x\,\mathrm dx\right)\left(\int_0^1y^2\,\mathrm dy\right)=\boxed{\frac23}](https://tex.z-dn.net/?f=E%5BY%5D%3D%5Cdisplaystyle%5Cint_0%5E1%5Cint_0%5E1%20y%5C%2Cf_%7BX%2CY%7D%28x%2Cy%29%5C%2C%5Cmathrm%20dx%5C%2C%5Cmathrm%20dy%3D4%5Cleft%28%5Cint_0%5E1x%5C%2C%5Cmathrm%20dx%5Cright%29%5Cleft%28%5Cint_0%5E1y%5E2%5C%2C%5Cmathrm%20dy%5Cright%29%3D%5Cboxed%7B%5Cfrac23%7D)
![E[XY]=\displaystyle\int_0^1\int_0^1xy\,f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=4\left(\int_0^1x^2\,\mathrm dx\right)\left(\int_0^1y^2\,\mathrm dy\right)=\boxed{\frac49}](https://tex.z-dn.net/?f=E%5BXY%5D%3D%5Cdisplaystyle%5Cint_0%5E1%5Cint_0%5E1xy%5C%2Cf_%7BX%2CY%7D%28x%2Cy%29%5C%2C%5Cmathrm%20dx%5C%2C%5Cmathrm%20dy%3D4%5Cleft%28%5Cint_0%5E1x%5E2%5C%2C%5Cmathrm%20dx%5Cright%29%5Cleft%28%5Cint_0%5E1y%5E2%5C%2C%5Cmathrm%20dy%5Cright%29%3D%5Cboxed%7B%5Cfrac49%7D)
(f) Note that the density of <em>X</em> | <em>Y</em> in part (d) identical to the marginal density of <em>X</em> found in (b), so yes, <em>X</em> and <em>Y</em> are indeed independent.
The result in (e) agrees with this conclusion, since E[<em>XY</em>] = E[<em>X</em>] E[<em>Y</em>] (but keep in mind that this is a property of independent random variables; equality alone does not imply independence.)
Answer:
Step-by-step explanation:
The vertices lie on the x-axis, as is determined by their coordinates. This makes the center of this hyperbola (0, 0) because the center is directly between the vertices. The fact that the foci also lie on the x-axis tells us that this is the main axis. What this also tells us is which way the hyperbola "opens". This one opens to the left and the right as opposed to up and down. The standard form for this hyperbola is:
and so far we have that h = 0 and k = 0.
By definition, a is the distance between the center and the vertices. So a = 5, and a-squared is 25. So we're getting there. Now here's the tricky part.
The expressions for the foci are (h-c, k) and (h+c, k). Since we know the foci lie at +/-13, we can use that to solve for c:
If h+c = 13 and h = 0, then
0 + c = 13 and c = 13.
We need that c value to help us find b:
and
and
and
so
b = 12. Now we're ready to fill in the equation:
and there you go!
So first what you want to do is take 98 and subtract it by 48. Which gives us 50. Now what we do is that since we are finding two numbers we would have to divide that by half, which would give us 25. Both of them are now equal. To find the number that makes that difference, we need to add 48 to one of the 25 values. Which would be 73. Meaning that the two numbers are 73 and 25. They both add up to 98 and 73 has a difference of 48 from 25.