Answer:
Step-by-step explanation:
Hello!
The objective of this experiment is to test if two different foam-expanding agents have the same foam expansion capacity
Sample 1 (aqueous film forming foam)
n₁= 5
X[bar]₁= 4.7
S₁= 0.6
Sample 2 (alcohol-type concentrates )
n₂= 5
X[bar]₂= 6.8
S₂= 0.8
Both variables have a normal distribution and σ₁²= σ₂²= σ²= ?
The statistic to use to make the estimation and the hypothesis test is the t-statistic for independent samples.:
t= ![\frac{(X[bar]_1 - X[bar]_2) - (mu_1 - mu_2)}{Sa*\sqrt{\frac{1}{n_1} + \frac{1}{n_2 } } }](https://tex.z-dn.net/?f=%5Cfrac%7B%28X%5Bbar%5D_1%20-%20X%5Bbar%5D_2%29%20-%20%28mu_1%20-%20mu_2%29%7D%7BSa%2A%5Csqrt%7B%5Cfrac%7B1%7D%7Bn_1%7D%20%2B%20%5Cfrac%7B1%7D%7Bn_2%20%7D%20%7D%20%7D)
a) 95% CI
(X[bar]_1 - X[bar]_2) ±
*
Sa²=
=
= 0.5
Sa= 0.707ç

(4.7-6.9) ± 2.306* 
[-4.78; 0.38]
With a 95% confidence level you expect that the interval [-4.78; 0.38] will contain the population mean of the expansion capacity of both agents.
b.
The hypothesis is:
H₀: μ₁ - μ₂= 0
H₁: μ₁ - μ₂≠ 0
α: 0.05
The interval contains the cero, so the decision is to reject the null hypothesis.
<u>Complete question</u>
a. Find a 95% confidence interval on the difference in mean foam expansion of these two agents.
b. Based on the confidence interval, is there evidence to support the claim that there is no difference in mean foam expansion of these two agents?
Answer:
37/6
Step-by-step explanation:
-23/6 - 7/3
= -23/6 - 14/6 just make both have the same denominator (2x the 3 to make 6 and do same with numerator)
= 37/6 or 6 1/6
Answer:
1) It is geometric
a) In each trial you can obtain 11 or obtain something else (and fail)
b) Throw 2 dices and watch if the result is 11 or not
c) The probability of success is 1/18
2) It is not geometric, but binomal.
Step-by-step explanation:
1) This is effectively geometric. When you see the sum of 2 dices, you can separate the result in two different outcomes: when the sum is 11 and when the sum is different from 11.
A trial is constituted bu throwing 2 dices and watching if the sum of the dices is 11 or not.
In order to get 11 you need one 5 in one dice and 1 six in another. As a consecuence, you have 2 favourable outcomes (a 5 in the first dice and a 6 in the second one or the other way around). The total amount of outcomes is 6² = 36, and all of them have equal probability. This means that the probability of success is 2/36 = 1/18.
2) This is not geometric distribution. The geometric distribution meassures how many tries do you need for one success. The amount of success in 10 trias follows a binomial distribution.
Smaller because it's basicly like a fraction and and the bigger the number the smaller the piece