Answer:
f'(x) = 1
General Formulas and Concepts:
<u>Calculus</u>
- Limit Properties:
![\lim_{n \to a} c = c](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20a%7D%20c%20%3D%20c)
- Definition of a Derivative:
![f'(x)= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}](https://tex.z-dn.net/?f=f%27%28x%29%3D%20%5Clim_%7Bh%20%5Cto%200%7D%20%5Cfrac%7Bf%28x%2Bh%29-f%28x%29%7D%7Bh%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = x + 2
<u>Step 2: Find derivative</u>
- Substitute:
![f'(x)= \lim_{h \to 0} \frac{((x + h) + 2)-(x+2)}{h}](https://tex.z-dn.net/?f=f%27%28x%29%3D%20%5Clim_%7Bh%20%5Cto%200%7D%20%5Cfrac%7B%28%28x%20%2B%20h%29%20%2B%202%29-%28x%2B2%29%7D%7Bh%7D)
- Distribute:
![f'(x)= \lim_{h \to 0} \frac{x + h + 2-x-2}{h}](https://tex.z-dn.net/?f=f%27%28x%29%3D%20%5Clim_%7Bh%20%5Cto%200%7D%20%5Cfrac%7Bx%20%2B%20h%20%2B%202-x-2%7D%7Bh%7D)
- Combine like terms:
![f'(x)= \lim_{h \to 0} \frac{h}{h}](https://tex.z-dn.net/?f=f%27%28x%29%3D%20%5Clim_%7Bh%20%5Cto%200%7D%20%5Cfrac%7Bh%7D%7Bh%7D)
- Divide:
![f'(x)= \lim_{h \to 0} 1](https://tex.z-dn.net/?f=f%27%28x%29%3D%20%5Clim_%7Bh%20%5Cto%200%7D%201)
- Evaluate:
![f'(x)= 1](https://tex.z-dn.net/?f=f%27%28x%29%3D%201)
Answer:
no I think not I have study it at 1 year ago
It would be B. 11 is bigger then 6
I could explain it, but you have to ask me, other than that the answer is 5(x+7)(9x-4).
The "mean" is the "average" you're used to, where you add up all the numbers and then divide by the number of numbers.