E and F are two events and that P(E)=0.3 and P(F|E)=0.5. Thus, P(E and F)=0.15
Bayes' theorem is transforming preceding probabilities into succeeding probabilities. It is based on the principle of conditional probability. Conditional probability is the possibility that an event will occur because it is dependent on another event.
P(F|E)=P(E and F)÷P(E)
It is given that P(E)=0.3,P(F|E)=0.5
Using Bayes' formula,
P(F|E)=P(E and F)÷P(E)
Rearranging the formula,
⇒P(E and F)=P(F|E)×P(E)
Substituting the given values in the formula, we get
⇒P(E and F)=0.5×0.3
⇒P(E and F)=0.15
∴The correct answer is 0.15.
If, E and F are two events and that P(E)=0.3 and P(F|E)=0.5. Thus, P(E and F)=0.15.
Learn more about Bayes' theorem on
brainly.com/question/17010130
#SPJ1
Answer:
Step-by-step explanation:
Start with the given inequality and solve it for x.
First, add 4 to both sides: 5x > 25
Next, divide both sides by 5: x > 5
The solution (set) is x > 5.
There is an app that will help for these types of questions called, "Showmath."
She can plant 34 plants in all. If you multiply 34 and 2 you will get 34 and I think that is the answer.