1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
2 years ago
13

Se tiene un lote baldío de forma triangular bardeado. La barda de enfrente tiene una medida de 4 m,las otras dos bardas no es po

sible medirlas directamente pues hay mucha basura. Sin embargo,se sabe que el ángulo que está frente a la barda frontal mide 34° y otro de sus ángulos mide 64°. Se quiere calcular la medida de la barda que está enfrente del ángulo de 64°. Explica por qué no es posible resolver el problema aplicando sólo las razones trigonométricas o el teorema de Pitágoras
Mathematics
1 answer:
dybincka [34]2 years ago
6 0

Answer:

a) La medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m. b) El triángulo en cuestión <em>no es un triángulo rectángulo</em>, es decir, ninguno de sus ángulos internos es <em>recto </em>(90 grados sexagesimales). En estos casos, no se puede aplicar el Teorema de Pitágoras o la simple utilización de las razones trigonométricas; se aplican, en cambio, leyes para la resolución de triángulos oblicuángulos (o triángulos no rectángulos).

Step-by-step explanation:

Este problema no se puede resolver "aplicando sólo las razones trigonométricas o el teorema de Pitágoras" porque es sólo aplicable a <em>triángulos rectos</em>, es decir, uno de los ángulos del triángulo es recto o igual a <em>90</em> grados sexagesimales. Los dos restantes triángulos suman 90 grados sexagesimales, o se dice, son <em>complementarios</em>.

La resolución de triángulos que no son rectos (conocida en algunos textos como solución de problemas de triángulos oblicuángulos) pueden resolverse usando, la <em>ley de los senos (o teorema del seno)</em>, <em>ley de los cosenos</em> y <em>la ley de las tangentes</em>. El caso propuesto en la pregunta se ajusta a la <em>ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}

Es decir, la razón entre el lado de un triángulo y el seno del ángulo que tiene frente a él es igual para todos los lados y ángulos del triángulo.

El triángulo de la pregunta no tiene un ángulo recto

La suma de los ángulos internos de un triángulo es de 180 grados sexagesimales:

\\ \alpha + \beta + \gamma = 180^{\circ}

En la pregunta tenemos que la suma de los dos ángulos propuestos es:

\\ 34^{\circ} + 64^{\circ} + \gamma = 180^{\circ}

\\ 98^{\circ} + \gamma = 180^{\circ}

Restando 98 grados sexagesimales a cada lado de la igualdad:

\\ 98^{\circ} - 98^{\circ} + \gamma = 180^{\circ} - 98^{\circ}

\\ 0 + \gamma = 180^{\circ} - 98^{\circ}

\\ \gamma = 82^{\circ}

Con lo que se deduce que no hay ningún ángulo recto en el triángulo propuesto y no se podría usar el Teorema de Pitágoras o simples razones trigonométricas para resolverlo.

Resolución del lado del triángulo

De la pregunta tenemos:

  • La barda de enfrente tiene una medida de 4m. El ángulo que está enfrente de esta barda (barda frontal) es de 34°.
  • No se sabe el valor del lado que está enfrente del ángulo de 64°, pero se puede calcular usando la Ley de los senos.

Digamos que:

\\ a = 4m, \alpha = 34^{\circ}

\\ b = x, \beta = 64^{\circ}

Entonces, aplicando la <em>Ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}

Multiplicando a cada lado de la igualdad por \\ \sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = \frac{b}{\sin(\beta)}*\sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*\frac{\sin(\beta)}{\sin(\beta)}

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*1

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b

Sustituyendo cada valor en la expresión anterior:

\\ b = \frac{a}{\sin(\alpha)}*\sin(\beta)

\\ b = \frac{4m}{\sin(34^{\circ})}*\sin(64^{\circ})

\\ b = 4m*\frac{0.8988}{0.5592}

\\ b = 6.4292m

En palabras, la medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m.

El lado <em>c</em> puede obtenerse de manera similar considerando que \\ \gamma = 82^{\circ}.

You might be interested in
42. Which matrix represents the image of the triangle with vertices at (-2,0), (1,5), and (4,-8) when dilated by a scale factor
jasenka [17]

The second matrix \left[\begin{array}{ccc}-6&3&12\\0&15&-24\end{array}\right] represents the triangle dilated by a scale factor of 3.

Step-by-step explanation:

Step 1:

To calculate the scale factor for any dilation, we divide the coordinates after dilation by the same coordinated before dilation.

The coordinates of a vertice are represented in the column of the matrix. Since there are three vertices, there are 2 rows with 3 columns. The order of the matrices is 2 × 3.

Step 2:

If we form a matrix with the vertices (-2,0), (1,5), and (4,-8), we get

\left[\begin{array}{ccc}-2&1&4\\0&5&-8\end{array}\right]

The scale factor is 3, so if we multiply the above matrix with 3 throughout, we will get the matrix that represents the vertices of the triangle after dilation.

Step 3:

The matrix that represents the triangle after dilation is given by

3\left[\begin{array}{ccc}-2&1&4\\0&5&-8\end{array}\right] = \left[\begin{array}{ccc}3(-2)&3(1)&3(4)\\3(0)&3(5)&3(-8)\end{array}\right] = \left[\begin{array}{ccc}-6&3&12\\0&15&-24\end{array}\right]

This is the second option.

4 0
2 years ago
A<br> 9x - 40<br> B<br> 3x + 20<br> x = [?]
Mrrafil [7]

Answer:

x = 10

Step-by-step explanation:

9x - 40 = 3x + 20

<u>9</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>x</u> - 40 = <u>3x - 3x</u> + 20

6x - 40 = 20

6x <u>-</u><u> </u><u>40</u><u> </u><u>+</u><u> </u><u>40</u> = <u>20</u><u> </u><u>+</u><u> </u><u>40</u>

6x = 60

<u>6x</u><u> </u><u>/</u><u> </u><u>6</u> = <u>60</u><u> </u><u>/</u><u> </u><u>6</u>

x = 10

Now plug the x value in the equation to make the statement true that A is parallel to B.

9x - 40

<u>9</u><u>(</u><u>10</u><u>)</u> - 40

<u>90</u><u> </u><u>-</u><u> </u><u>40</u>

50

3x + 20

<u>3</u><u>(</u><u>10</u><u>)</u> + 20

<u>30</u><u> </u><u>+</u><u> </u><u>20</u>

50

Therefore, x = 10 making the statement true that A is parallel to B. Hope this helps and stay safe, happy, and healthy, thank you :) !!

7 0
3 years ago
Read 2 more answers
Write two division expression s that have the same vaule as 36.8 ÷ 2.3
Triss [41]
<h3><u>Write two division expression s that have the same vaule as 36.8 ÷ 2.3 </u></h3>

32 \div 2 = 16\\\\48 \div 3 = 16

<em><u>Solution:</u></em>

Given that,

We hve to find the two division expression s that have the same vaule as 36.8 ÷ 2.3

From given,

36.8 \div 2.3 = 16

So, we have to find two division expressions that has a value of 16

<em><u>First division expression</u></em>

We know that 32 divided by 2 gives 16

Thus, we can write as,

32 \div 2 = 16

<em><u>Second Expression:</u></em>

We know that 48 divided by 3 gives 16

Thus, we can write as,

48 \div 3 = 16

Thus the two expressions are found

7 0
3 years ago
Can someone help me with this please and don’t guess I really need help
zysi [14]

Answer:

it should be (5,4)

Step-by-step explanation:

♊♊♊

3 0
2 years ago
Read 2 more answers
PLZZ help 40pts
lyudmila [28]

Answer:  At noon the temperature outside of Hector's home was 4 degree warmer than the temperature outside of gale's home.  

Step-by-step explanation:

Here, x represents the number of hours after noon while g(x) and f(x) represents the temperature of gale's and hector's home respectively in x hours.

Since, at noon, x = 0

And, by the table g(x=0) = -1

That is, the temperature of gale's home is -1° F at noon.

And, by the given graph, f(x=0) = 3

That is, the the temperature of hector's home is 3° F at noon.

And,  f(0)-g(0) = 3-(-1) = 4°F

That is, the difference between  the temperature of hector's home at noon and the temperature of gale's home at noon is 4°F.



6 0
3 years ago
Read 2 more answers
Other questions:
  • Express the repeating decimal 0.73 as a geometric series and find its sum
    9·1 answer
  • What is the measure of angle VXZ
    14·1 answer
  • How do you write out the domain and range of a function?
    10·1 answer
  • what os the measure of the angle formed by the minute hand and the hour hand of a clock when the clock ahows 4:00
    6·1 answer
  • Solve the system by substitution.<br> y = –2x + 18<br> y = -4x<br> HURRY PLEASE
    7·1 answer
  • Five sixths yards = inches
    8·1 answer
  • PLZ HELP I WILL MARK BRIANLIST Complete the table for 11, 15, and 19 days. Input your
    6·2 answers
  • What is the area of this shape?
    5·2 answers
  • Find the length of side BC. Round your answer to the nearest tenth.
    5·1 answer
  • The financial planner for a beauty products manufacturer develops the system of equations below to determine how many combs must
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!