Answer:
a)
⇒
⇒
b)
⇒
⇒
Explanation:
A)
Remember that positive number superscripts mean electrons lack and negative numbers mean electrons 'excess' (if we compare it with the neutral element). So, for the case of Fe2+ which is converted to Fe3+, we know that in Fe2+ there is a two electrons lack, while in Fe3+ there is a 3 electrons lack; it means that Fe2+ was converted to Fe3+ but releasing one electron:
⇒
The same analysis is applied to Br2; Br2 is a molecule which is said to have a zero superscript because it is an apolar covalent bond; and it is converted to Br-, which, according to what I wrote above, means that there is a one electron excess. So, Br2 must have received an electron in order to change to Br-; but Br2 can't change to Br- as simple as that because Br2 is a molecule, not an atom; it is a molecule that has two Br atoms, so, Br2 must give two Br- ions as products, but receiving one electron for each one:
⇒
b)
Applying the same, in Mg2+ there is a 2 electrons lack, and in Mg is not electron lack (its superscript is zero), so Mg must have released two electrons in order to change to Mg2+:
⇒
Cr3+ has a 3 electrons lack, and Cr2+ a two electrons one, so, Cr3+ must receive an electron to convert to Cr2+:
⇒
E=mc (square) E= mass times capacity squared
Carbonated drinks have the air under pressure so that carbon bubbles are forced into the drink, keeping it carbonated. So when you open a can, the air under pressure in the can comes out of the can at a high speed, making a "whooshing" sound. The gas law that applies to this concept is the Boyle's Law (PV=k or P1V1=P2V2).
#1: The element that loses electrons in a chemical reaction is said to have been which of the following?
A. reduced
B. oxidized
C. combusted
D. rusted
**idk, is it reduced or oxidized??
Answer: oxidized. The element that loses electrons increases its oxidation number (becomes more positve or less negative) and this is oxidation.
Which type of reaction occurs if one element gains electrons and another loses electrons?
A. combustion
B. synthesis
C. oxidation-reduction
D. double-displacement
**my answer: C
Yes, oxidation-reduction
#3: What is the oxidation number for phosphorus in H4P2O7?
A. +5
B. +3
C. +1
D. - 1
**my answer: A. +5
This is the way to calculate it 4(+1) + 2x + 7(-2) = 0 => x = +5
#4: What is the oxidation number for phosphorus in Na2HPO3?
A. +5
B. +3
C. +1
D. - 1
**my answer; B. +3
is that right??
Right
2(+1) + 1 + x + 3(-2) = 0 => x = 6 -1 -2 = 3 (positive)
Answer:
Here malonic acid acts as a competitive inhibitor of succinate dehydrogenase
Explanation:
Malonic acid structurally resembles succinic acid as a result the enzyme succinate dehydrogenase cannot distinguish between malonic acid and succinic acid.
That"s why malonic acid interact with succinate dehydrogenase thereby blocking the catalytic activity of the later.
As this mechanism is a type of competitive inhibition that"s why increasing the concentration of substrate succinic acid can reduce the inhibitory effect of malonic acid.