Answer:
4.59 × 10⁻³⁶ kJ/photon
Explanation:
Step 1: Given and required data
- Wavelength of the violet light (λ): 433 nm
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
- Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Convert "λ" to meters
We will use the conversion factor 1 m = 10⁹ nm.
433 nm × 1 m/10⁹ nm = 4.33 × 10⁷ m
Step 3: Calculate the energy (E) of the photon
We will use the Planck-Einstein's relation.
E = h × c/λ
E = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/4.33 × 10⁷ m
E = 4.59 × 10⁻³³ J = 4.59 × 10⁻³⁶ kJ
Answer:
Se detailed explanation.
Explanation:
Hello,
In this case, since both magnesium and calcium ions are in group IIA, we can review the following similar properties:
- Since both calcium and magnesium are in group IIA they have two valence electrons, it means that the both of them have two electrons at their outer shells.
- They are highly soluble in water when forming ionic bonds with nonmetals such as those belonging to halogens and oxygen's family.
- Calcium has 18 electrons and magnesium 10 which are two less than the total protons (20 and 12 respectively) since the both of them have lost two electrons due their ionized form.
- Their electron configurations are:

It means that the both of them are at the
region since it is the last subshell at which their electrons are.
Best regards.
Answer:
because too much can neutralise the results
Perhaps when they are trying to find the distance of an asteroid to the Earth to find out whether or not it is a hazard to Earth.