Answer:
- <u>Question 1:</u>
<u />
<u />
- <u>Question 2:</u>
<u />
<u />
- <u>Question 3:</u>
<u />
<u />
- <u>Question 4:</u>
<u />
Explanation:
<u>Question 1: Write down the differential equation the mass of the bacteria, m, satisfies: m′= .2m</u>
<u></u>
a) By definition: 
b) Given: 
c) By substitution: 
<u>Question 2: Find the general solution of this equation. Use A as a constant of integration.</u>
a) <u>Separate variables</u>

b)<u> Integrate</u>


c) <u>Antilogarithm</u>



<u>Question 3. Which particular solution matches the additional information?</u>
<u></u>
Use the measured rate of 4 grams per hour after 3 hours

First, find the mass at t = 3 hours

Now substitute in the general solution of the differential equation, to find A:

Round A to 1 significant figure:
<u>Particular solution:</u>

<u>Question 4. What was the mass of the bacteria at time =0?</u>
Substitute t = 0 in the equation of the particular solution:

7____ is the one that couldn't used to complete a table of eqiuvalent ratios
♥ Let's solve:
15n+5n can be known as 15+5.
15+5=20 now add n.
Final answer: 20n
Answer:

Step-by-step explanation:
No it isn't, because:
![{1.08}^{ \frac{1}{5} } = { \frac{108}{100} }^{ \frac{1}{5} } = { \frac{27}{25} }^{ \frac{1}{5} } = \sqrt[5]{ \frac{27}{25} } = 1.01551](https://tex.z-dn.net/?f=%20%7B1.08%7D%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%3D%20%20%7B%20%5Cfrac%7B108%7D%7B100%7D%20%7D%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%3D%20%20%7B%20%5Cfrac%7B27%7D%7B25%7D%20%7D%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%3D%20%20%5Csqrt%5B5%5D%7B%20%5Cfrac%7B27%7D%7B25%7D%20%7D%20%20%3D%201.01551)
Answer:
There would be 19 ballons left
Step-by-step explanation: