1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeeva-Olga [200]
3 years ago
5

Write three equivalent ratios for the given ratio 4/3

Mathematics
1 answer:
scZoUnD [109]3 years ago
6 0

Answer:

8/6; 12/9; 16/12.............

You might be interested in
The value of 9−y is twice the value of y. What is the value of y?
ElenaW [278]

Answer:

y = 3

Step-by-step explanation:

9 - y = 2y

<u>Step 1:  Add y to both sides</u>

9 - y + y = 2y + y

9 = 3y

<u>Step 2:  Divide both sides by 3</u>

9 / 3 = 3y / 3

3 = y

Answer:  y = 3

7 0
3 years ago
On the grid, draw the graph of<br> y = 2x - 3<br> for values of x from -2 to 4<br> Q
Pie

Answer:

Plot these points:(-2,-7) (-1,-5) (0,-3) (1,-1) (2,1) (3,3) (4,5)

Step-by-step explanation:

You need to substitute your x values into the x of the equation y=2(3)-3 to find the y value...

3 0
3 years ago
Somebody please help me ! This is due today by midnight
katrin [286]

Answer:

19. D

20. A

Step-by-step explanation:

19. Tan= opp/adj

20. Sin= opp/hyp

7 0
2 years ago
Read 2 more answers
Jenny is 13 years older than her sister myra myra is 6 years younger than her sister melody their combined age is equal to 88 ye
il63 [147K]
X : Myra age
Jenny : x+13
Melody : x+6
x + x + 13 + x + 6 = 88 \\ 3x + 19 = 88 \\ 3x = 69 \\ x = 23
5 0
3 years ago
Read 2 more answers
Match each vector operation with its resultant vector expressed as a linear combination of the unit vectors i and j.
Cloud [144]

Answer:

3u - 2v + w = 69i + 19j.

8u - 6v = 184i + 60j.

7v - 4w = -128i + 62j.

u - 5w = -9i + 37j.

Step-by-step explanation:

Note that there are multiple ways to denote a vector. For example, vector u can be written either in bold typeface "u" or with an arrow above it \vec{u}. This explanation uses both representations.

\displaystyle \vec{u} = \langle 11, 12\rangle =\left(\begin{array}{c}11 \\12\end{array}\right).

\displaystyle \vec{v} = \langle -16, 6\rangle= \left(\begin{array}{c}-16 \\6\end{array}\right).

\displaystyle \vec{w} = \langle 4, -5\rangle=\left(\begin{array}{c}4 \\-5\end{array}\right).

There are two components in each of the three vectors. For example, in vector u, the first component is 11 and the second is 12. When multiplying a vector with a constant, multiply each component by the constant. For example,

3\;\vec{v} = 3\;\left(\begin{array}{c}11 \\12\end{array}\right) = \left(\begin{array}{c}3\times 11 \\3 \times 12\end{array}\right) = \left(\begin{array}{c}33 \\36\end{array}\right).

So is the case when the constant is negative:

-2\;\vec{v} = (-2)\; \left(\begin{array}{c}-16 \\6\end{array}\right) =\left(\begin{array}{c}(-2) \times (-16) \\(-2)\times(-6)\end{array}\right) = \left(\begin{array}{c}32 \\12\end{array}\right).

When adding two vectors, add the corresponding components (this phrase comes from Wolfram Mathworld) of each vector. In other words, add the number on the same row to each other. For example, when adding 3u to (-2)v,

3\;\vec{u} + (-2)\;\vec{v} = \left(\begin{array}{c}33 \\36\end{array}\right) + \left(\begin{array}{c}32 \\12\end{array}\right) = \left(\begin{array}{c}33 + 32 \\36+12\end{array}\right) = \left(\begin{array}{c}65\\48\end{array}\right).

Apply the two rules for the four vector operations.

<h3>1.</h3>

\displaystyle \begin{aligned}3\;\vec{u} - 2\;\vec{v} + \vec{w} &= 3\;\left(\begin{array}{c}11 \\12\end{array}\right) + (-2)\;\left(\begin{array}{c}-16 \\6\end{array}\right) + \left(\begin{array}{c}4 \\-5\end{array}\right)\\&= \left(\begin{array}{c}3\times 11 + (-2)\times (-16) + 4\\ 3\times 12 + (-2)\times 6 + (-5) \end{array}\right)\\&=\left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle\end{aligned}

Rewrite this vector as a linear combination of two unit vectors. The first component 69 will be the coefficient in front of the first unit vector, i. The second component 19 will be the coefficient in front of the second unit vector, j.

\displaystyle \left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle = 69\;\vec{i} + 19\;\vec{j}.

<h3>2.</h3>

\displaystyle \begin{aligned}8\;\vec{u} - 6\;\vec{v} &= 8\;\left(\begin{array}{c}11\\12\end{array}\right) + (-6) \;\left(\begin{array}{c}-16\\6\end{array}\right)\\&=\left(\begin{array}{c}88+96\\96 - 36\end{array}\right)\\&= \left(\begin{array}{c}184\\60\end{array}\right)= \langle 184, 60\rangle\\&=184\;\vec{i} + 60\;\vec{j} \end{aligned}.

<h3>3.</h3>

\displaystyle \begin{aligned}7\;\vec{v} - 4\;\vec{w} &= 7\;\left(\begin{array}{c}-16\\6\end{array}\right) + (-4) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}-112 - 16\\42+20\end{array}\right)\\&= \left(\begin{array}{c}-128\\62\end{array}\right)= \langle -128, 62\rangle\\&=-128\;\vec{i} + 62\;\vec{j} \end{aligned}.

<h3>4.</h3>

\displaystyle \begin{aligned}\;\vec{u} - 5\;\vec{w} &= \left(\begin{array}{c}11\\12\end{array}\right) + (-5) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}11-20\\12+25\end{array}\right)\\&= \left(\begin{array}{c}-9\\37\end{array}\right)= \langle -9, 37\rangle\\&=-9\;\vec{i} + 37\;\vec{j} \end{aligned}.

7 0
3 years ago
Other questions:
  • I only need the Evens ;-;
    5·1 answer
  • Anita Read 24 Pages Of Her Book In 12 Minutes . How Long Will It Take Her To Read 34 Pages ?
    5·1 answer
  • Y=37x+11y=37x+11
    10·2 answers
  • Campare the graphs of y=ax^2 and y=(cx)^2 to the graph of the parent function y=x^2 for a=c&gt;0​
    6·1 answer
  • What is the factored form of the expression? w^2+16w+64
    13·2 answers
  • A recipe need 5/4 of a cup of suger you are going to triple the recipe how much sugar do you need
    8·1 answer
  • Standard form of y+2=1/2(x-4)
    8·2 answers
  • How to convert 11/13 to a decimal.
    12·2 answers
  • Angle
    11·1 answer
  • Think about all of the ways in which a circle and a parabola can intersect.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!