Answer:
![{27}^{ \frac{1}{3} } = \sqrt[3]{27} = \sqrt[3]{3 \times 3 \times 3} = \boxed{ 3}✓](https://tex.z-dn.net/?f=%20%7B27%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%5Csqrt%5B3%5D%7B27%7D%20%20%3D%20%20%5Csqrt%5B3%5D%7B3%20%5Ctimes%203%20%5Ctimes%203%7D%20%20%3D%20%5Cboxed%7B%203%7D%E2%9C%93)
<h3>3. <em><u>3</u></em> is the right answer.</h3>
Answer:

Step-by-step explanation:
<u>Exponential Growth
</u>
The natural growth of some magnitudes can be modeled by the equation:

Where P is the actual amount of the magnitude, Po is its initial amount, r is the growth rate and t is the time.
The initial number of bacteria is Po=40 and it doubles (P=2Po) at t=20 min. With that point we can find the value of r:

Simplifying:

Solving for 1+r:
![1+r=\sqrt[20]{2}](https://tex.z-dn.net/?f=1%2Br%3D%5Csqrt%5B20%5D%7B2%7D)

The exponential function that models the situation is:

Low-birthweight i believe.
I dont remember that one sorry
Step-by-step explanation:
Answer:
≅ 0.02083333
Step-by-step explanation:
(3.5 * 2/7 - 2/3)÷16 = 1
48
≅ 0.02083333
1: Conversion a decimal number to a fraction: 3.5
2: Multiple: 3.5 * 2
7
= 7 · 2
2 · 7
= 14
14
= 1 · 14
1 · 14
= 1
3: Subtract:
4: Divide
<em><u>Hope this helps.</u></em>