Answer:
it's used by some sea shores for heat since the ocean takes time to cool down
it's used for salt
it's used to keep sea animals and certain endangered plant species
Answer:
Explanation:
For the reaction
C2H5OH (l) + 3 O2(g) = 2CO2(g) + 3 H2O
We can calculate the standard molar enthalpy of combustion using the standard enthalpies of formation of the species involved in the reaction according to Hess law:
ΔHºc = 2ΔHºf CO2 (g) + 3ΔHºfH2O(l) - ( ΔHºf C2H5OH (l) - 3ΔHºfO2 (g) )
( we were not give the water state but we know we are at standard conditions so it is in its liquid state )
The ΔHºfs can be found in appropiate reference or texts.
ΔHºc = 2ΔHºf CO2 (g)+ 3ΔHºfH2O(l) - ( ΔHºf C2H5OH (l) -+3ΔHºfO2 (g) )
= [ 2 ( -393.52 ) + 3 ( -285.83 ) ] - [( -276.2 + 0 ) ] kJ
ΔHºc = -1368.33 kJ
Answer:
252.68 K or -20.46 °C
Explanation:
According to Gay-Lussac's Law, "Pressure and Temperature at given volume are directly proportional to each other".
Mathematically,
P₁ / T₁ = P₂ / T₂ ---- (1)
Data Given:
P₁ = 30.7 kPa
T₁ = 0.00 °C = 273.15 K
P₂ = 28.4 kPa
T₂ = <u>???</u>
Solving equation for T₂,
T₂ = P₂ T₁ / P₁
Putting values,
T₂ = 28.4 kPa × 273.15 K / 30.7 kPa
T₂ = 252.68 K or -20.46 °C
Explanation:
Reaction equation for the given chemical reaction is as follows.
Equation for reaction quotient is as follows.
Q =
=
= 0.256
As, Q > K (= 0.12)
The effect on the partial pressure of as equilibrium is achieved by using Q, is as follows.
- This means that there are too much products.
- Equilibrium will shift to the left towards reactants.
- More is formed.
- Partial pressure of increases.