Answer:
the stoichiometric coefficient for cobalt is 3
Explanation:
the unbalanced reaction would be
Co(NO₃)₂+ Al → Al(NO₃)₃ + Co
One way to solve is to build a system of linear equations for each element (or group as NO₃) , knowing that the number of atoms of each element is conserved.
For smaller reactions a quick way to solve it can be:
- First the Co as product and as reactant needs to have the same stoichiometric coefficient
- Then the Al as product and as reactant needs to have the same stoichiometric coefficient
- After that we look at the nitrates . There are 2 as reactants and 3 as products . Since the common multiple is 6 then multiply the reactant by 3 and the product by 2.
Finally the balanced equation will be
3 Co(NO₃)₂+ 2 Al → 2 Al(NO₃)₃ + 3 Co
then the stoichiometric coefficient for cobalt is 3
A molecule with a triple covalent bond is N2
Na would be the best conductor of electricity
Exothermic. The reaction of the two elements form the compound iron sulfide.
Hello!
The reaction between HBr and KOH is the following:
HBr+KOH
→H₂O + KBr
To calculate the amount of HBr left after addition of KOH, you'll use the following equations:
![HBr_f=HBr_i-KOH=([HBr]*vHBr)-([KOH]*vKOH) \\ \\ HBr_f=(0,25M*0,64L)-(0,5M*0,32L)=0 mol HBr](https://tex.z-dn.net/?f=HBr_f%3DHBr_i-KOH%3D%28%5BHBr%5D%2AvHBr%29-%28%5BKOH%5D%2AvKOH%29%20%5C%5C%20%20%5C%5C%20HBr_f%3D%280%2C25M%2A0%2C64L%29-%280%2C5M%2A0%2C32L%29%3D0%20mol%20HBr)
That means that after the addition of 32 mL of KOH, there is no HBr left in the solution and the pH should be
neutral, close to 7.
Have a nice day!