Answer: The gravitational force Fg exerted on the orbit by the planet is Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Explanation:
Gravitational Force Fg = GMm/r2----1
Where G is gravitational constant
M Mass of the planet, m mass of the orbit and r is the distance between the masses.
Since the circular orbit move around the planet, it means they do not touch each other.
The distance between two points on the circumference of the two massesb is given by d, while the distance from the radius of each mass to the circumferences are R1 and R2 from the question.
Total distance r= (R1 + d + R2)^2---2
Recall, density rho =
Mass M/Volume V
Hence, mass of planet = rho × V
But volume of a sphere is 4/3πr3
Therefore,
Mass M of planet = rho × 4/3πr3
=4/3πr3rho in kg
From equation 1 and 2
Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Answer:
The final kinetic energy of the Helium nucleus (alpha particle) after been scattered through an angle of 120° is
8.00 x 10-13J
Explanation:
In Rutherford Scattering experiment, the collision of the helium nucleus with the gold nucleus is an ELASTIC COLLISION. This means that the kinetic energy is conserved ( The same before and after the collision).
Thus, the final kinetic energy of the helium nucleus is the same as initial kinetic energy (8.00 x 10^-13Joules)
Although, the kinetic energy is converted to potential energy in Coulomb's law equation.
That is,
1/2(mv^2) = (K* q1q2)/r
Where m is the mass of helium nucleus, v is its colliding velocity, k is electrostatic constant, q1 is the charge on helium nucleus, q2 is the charge on gold nucleus, r is impact parameter
Centripetal force is given by F= mv²/r.
Given: m = 0.5 kg, v = 3 m/s, r = 0.5 m
Putting values,
F= mv²/r = 0.5× 3²/0.5 = 9 N
Answer: The weight of a girl with a mass of 40kg is 392.266 Newtons.
Explanation:
B. opposite charge and smaller mass