Answer:
Ms. Thomas was driving at constant rate of 52 miles/hour.
Step-by-step explanation:
Given:
Total time to travel (t) = 45 minutes
Distance drove (d) = 39 miles
we need to find the constant rate in miles per hour at which she was driving.
Solution:
Now we know that;
We need to find constant rate at miles per hour;
But time is given in minutes.
So we will convert minutes into hour by dividing by 60 we get;
time 
Now we know that;
Distance is equal to rate times time.
framing in equation form we get;
distance 
Or
rate 
Hence Ms. Thomas was driving at constant rate of 52 miles/hour.
$256.75
Add $178 + $98.25= $276.25
Then $276.25 - $19.50 = $256.75
Answer:
The general plan is to find BM and from that CM. You need 2 equations to do that.
Step One
Set up the two equations.
(7 - BM)^2 + CM^2 = (4*sqrt(2) ) ^ 2 = 32
BM^2 + CM^2 = 5^2 = 25
Step Two
Subtract the two equations.
(7 - BM)^2 + CM^2 = 32
BM^2 + CM^2 = 25
(7 - BM)^2 - BM^2 = 7 (3)
Step three
Expand the left side of the new equation labeled (3)
49 - 14BM + BM^2 - BM^2 = 7
Step 4
Simplify And Solve
49 - 14BM = 7 Subtract 49 from both sides.
-49 - 14BM = 7 - 49
- 14BM = - 42 Divide by - 14
BM = -42 / - 14
BM = 3
Step Five
Find CM
CM^2 + BM^2 = 5^2
CM^2 + 3^2 = 5^2 Subtract 3^2 from both sides.
CM^2 = 25 - 9
CM^2 = 16 Take the square root of both sides.
sqrt(CM^2) = sqrt(16)
CM = 4 < Answer
Step-by-step explanation:
Multiply the tops and multiply the bottoms
Aka
5*21
-------
7*25
And simplify