Answer:
Mr. Garcia had 5 kilograms of blueberries at first
Step-by-step explanation:
to make this easiest, we can imagine that we're undoing mr. garcia's actions.
So, we can start by 'unpacking' mr garcia's bags
we know that each of the nine bags had 1/4 kilograms, so we can multiply 1/4 by 9 to find the collective mass packed into bags
(remember, multiplication is repeated addition. we could also add 1/4 + 1/4 + 1/4... nine times, but this would take a while)
so,
1/4 x 9 = 9/4
(9 = 9/1 [if that is how you're used to multiplying a fraction])
Then, he also sold 2 3/4 kilograms
so, we can add 2 3/4 + 9/4 to find the total mass of the blueberries at first
2 3/4 + 9/4 = 2 + 12/4
(12/4 = 3)
2 + 3 = 5
So, Mr. Garcia had 5 kilograms of blueberries at first
U(x) = f(x).(gx)
v(x) = f(x) / g(x)
Use chain rule to find u(x) and v(x).
u '(x) = f '(x) g(x) + f(x) g'(x)
v ' (x) = [f '(x) g(x) - f(x) g(x)] / [g(x)]^2
The functions given are piecewise.
You need to use the pieces that include the point x = 1.
You can calculate f '(x) and g '(x) at x =1, as the slopes of the lines that define each function.
And the slopes can be calculated graphycally as run / rise of each graph, around the given point.
f '(x) = slope of f (x); at x = 1, f '(1) = run / rise = 1/1 = 1
g '(x) = slope of g(x); at x = 1, g '(1) = run / rise = 1.5/ 1 = 1.5
You also need f (1) = 1 and g(1) = 2
Then:
u '(1) = f '(1) g(1) + f(1) g'(1) = 1*2 + 1*1.5 = 2 + 1.5 = 3.5
v ' (x) = [f '(1) g(1) - f(1) g(1)] / [g(1)]^2 = [1*2 - 1*1.5] / (2)^2 = [2-1.5]/4 =
= 0.5/4 = 0.125
Answers:
u '(1) = 3.5
v '(1) = 0.125
Answer:
D
Step-by-step explanation:
Annoying to type out, take my word for it
Let L be the length
so L=Lfinal - Linitial = 7 +9=16
the answer is
<span>C.16</span>