Answer:
erosion
Explanation:
it carries things from one place to another
Answer:
2.47 s
Explanation:
Convert the final velocity to m/s.
We have the acceleration of the gazelle, 4.5 m/s².
We can assume the gazelle starts at an initial velocity of 0 m/s in order to determine how much time it requires to reach a final velocity of 11.1111 m/s.
We want to find the time t.
Find the constant acceleration equation that contains all four of these variables.
Substitute the known values into the equation.
- 11.1111 = 0 + (4.5)t
- 11.1111 = 4.5t
- t = 2.469133333
The Thompson's gazelle requires a time of 2.47 s to reach a speed of 40 km/h (11.1111 m/s).
Answer:
a) n = 9.9 b) E₁₀ = 19.25 eV
Explanation:
Solving the Scrodinger equation for the electronegative box we get
Eₙ = (h² / 8m L²2) n²
where l is the distance L = 1.40 nm = 1.40 10⁻⁹ m and n the quantum number
In this case En = 19 eV let us reduce to the SI system
En = 19 eV (1.6 10⁻¹⁹ J / 1 eV) = 30.4 10⁻¹⁹ J
n = √ (In 8 m L² / h²)
let's calculate
n = √ (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 30.4 10⁻¹⁹ / (6.63 10⁻³⁴)²
n = √ (98) n = 9.9
since n must be an integer, we approximate them to 10
b) We substitute for the calculation of energy
In = (h² / 8mL2² n²
In = (6.63 10⁻³⁴) 2 / (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 10²
E₁₀ = 3.08 10⁻¹⁸ J
we reduce eV
E₁₀ = 3.08 10⁻¹⁸ j (1ev / 1.6 10⁻¹⁹J)
E₁₀ = 1.925 101 eV
E₁₀ = 19.25 eV
the result with significant figures is
E₁₀ = 19.25 eV
Answer:
the free encyclopedia. In molecular geometry, bond length or bond distance is defined as the average distance between nuclei of two bonded atoms in a molecule. It is a transferable property of a bond between atoms of fixed types, relatively independent of the rest of the molecule.
Explanation:
Hello My Dear Friend!Do you mean
Sun or actually Moon?If Moon is what you're looking for...then that is
absolutely IMPOSSIBLE, due to that the Earth is WAY bigger than the Moon, therefore, not even HALF of the Earth would fit into the Moon since it's too small XD.But if it's
Sun...well then, t<span>he Answer is that it would take </span>
1.3 million Earths<span>
to fill up the Sun. That's a lot of Earths LOL XD</span>
I Hope my answer has come to your Help. Thank you for posting your question here in

We hope to answer more of your questions and inquiries soon.
Have a nice day ahead! :)
