Answer:
It will become a temporary magnet because the domains will easily realign.
Explanation:
Answer:
She must stop the car before interception, distance traveled 12.66 m
Explanation:
We will take all units to the SI system
Vo = 48Km / h (1000m / 1Km) (1h / 3600s) = 13.33 m / s
V2 = 70 Km / h = 19.44 m / s
We calculate the distance traveled before stopping
X = Vo t + ½ to t²
Time is what it takes traffic light to turn red is t = 2.0 s
X = 13.33 2 + 1.2 (-7) 2²
X = 12.66 m
It stops car before reaching the traffic light turning to red
Let's analyze what happens if you accelerate, let's calculate the acceleration of the vehicle
V2 = Vo + a t2
a = (V2-Vo) / t2
a = (19.44-13.33) /6.6
a = 0.926 m / s2
This is the acceleration to try to pass the interception, now let's calculate the distance it travels in the time the traffic light changes from yellow to red (t = 2.0 s)
X = Vo t + ½ to t²
X = 13.33 2 + ½ 0.926 2²
X = 28.58 m
Since the vehicle was 30 m away, the interception does not happen
The answer is A, because it’s the first one
Formula for terminal
velocity is:
Vt = √(2mg/ρACd)
<span>Vt = terminal velocity = ?
<span>m = mass of the falling object = 72 kg
<span>g = gravitational acceleration = 9.81 m/s^2
<span>Cd = drag coefficient = 0.80
<span>ρ = density of the fluid/gas = 1.2 kg/m^3</span>
<span>A = projected area of the object (feet first) = 0.21 m * 0.41
m = 0.0861 m^2
Therefore:</span></span></span></span></span>
Vt = √(2 * 72
* 9.81 / 1.2 * 0.0861 * 0.80)
<span>Vt = 130.73 m/s</span>
When you are talking about calculating the kinetic energy of an object, the formula is as stated:
Ek =1/2mv²
Where m is mass and v is velocity. Sub all those numbers in and you'll get 25J of kinetic energy.