Answer:
λ = 1360 m
Explanation:
Given data:
frequency of driving nails is given as 1 stroke per second mean at every 0.25 sec she hit the nails
speed of sound is given as 340 m/s
we know that the wave equation is given as
Speed = frequency × wavelength,
v = f × λ
where,
v = speed in meters/second (m/s)
f = frequency in Hertz (Hz)
substituing value to get wavelength of her driving nails


λ = 1360 m
Answer:
Explanation:
Diffraction grating is used to form interference pattern of dark and bright band.
Distance between adjacent slits (a ) = 1 / 420 mm
= 2.38 x 10⁻³ mm
2.38 x 10⁻⁶ m
wave length of red light
= 680 x 10⁻⁹ m
For bright red band
position x on the screen
= n λD / a , n = 0,1,2,3 etc
D = distance of screen
putting n = 1 , 2 and 3 , we can get three locations of bright red band.
x₁ = λD / a
= 680 x 10⁻⁹ x 2.8 / 2.38 x 10⁻⁶
= .8 m
= 80 cm
Position of second bright band
= 2 λD / a
= 2 x 80
= 160 cm
Position of third bright band
= 3 λD / a
= 3 x 80
= 240 cm
The final temperature of the system is 32.5°
we know, H = mcT
where, H = Heat content of the body
m = Mass,
c = Specific heat
T = Change in temperature
According to to the Principle of Calorimetry
The net heat remains constant i.e.
⇒ the heat given by water = heat accepted by the aluminum container.
⇒ 330 x 1 x (45 - T) = 855 x

x (T - 10)
⇒ 14,850 - 330T = 183.21T - 1832
⇒ - 513.21 T = - 16682
or T = 32.5°
Answer:
1) Weight on Mercury

Explanation:
do the same to the rest and use your calculator to find the weight in N.
Answer: 
Explanation:
Given
Mass 
Spring constant 
Compression in the spring 
When the mass leaves the spring, the elastic potential energy of spring is being converted into kinetic energy of mass i.e.

The kinetic energy of the mass is 1.102 J.