Answer:
2/3
Explanation:
In the case shown above, the result 2/3 is directly related to the fact that the speed of the rocket is proportional to the ratio between the mass of the fluid and the mass of the rocket.
In the case shown in the question above, the momentum will happen due to the influence of the fluid that is in the rocket, which is proportional to the mass and speed of the same rocket. If we consider the constant speed, this will result in an increase in the momentum of the fluid. Based on this and considering that rocket and fluid has momentum in opposite directions we can make the following calculation:
Rocket speed = rocket momentum / rocket mass.
As we saw in the question above, the mass of the rocket is three times greater than that of the rocket in the video. For this reason, we can conclude that the calculation should be done with the rocket in its initial state and another calculation with its final state:
Initial state: Speed = rocket momentum / rocket mass.
Final state: Speed = 2 rocket momentum / 3 rocket mass. -------------> 2/3
Explanation:
Given that,
Weight of water = 25 kg
Temperature = 23°C
Weight of mass = 32 kg
Distance = 5 m
(a). We need to calculate the amount of work done on the water
Using formula of work done



The amount of work done on the water is 1568 J.
(b). We need to calculate the internal-energy change of the water
Using formula of internal energy
The change in internal energy of the water equal to the amount of the work done on the water.


The change in internal energy is 1568 J.
(c). We need to calculate the final temperature of the water
Using formula of the change internal energy





The final temperature of the water is 23.01°C.
(d). The amount of heat removed from the water to return it to it initial temperature is the change in internal energy.
The amount of heat is 1568 J.
Hence, This is the required solution.
Answer:
0.0133 A
Explanation:
The time at which B=1.33 T is given by
1.33 = 0.38*t^3
t = (1.33/0.38)^(1/3) = 1.52 s
Using Faraday's Law, we have
emf = - dΦ/dt = - A dB/dt = - A d/dt ( 0.380 t^3 )
Area A = pi * r² = 3.141 *(0.025 *0.025) = 0.00196 m²
emf = - A*(3*0.38)*t^2
thus, the emf at t=1.52 s is
emf = - 0.00196*(3*0.38)*(1.52)^2 = -0.0052 V
if the resistance is 0.390 ohms, then the current is given by
I = V/R = 0.0052/0.390 = 0.0133 A
efficiency=work output/work input×100
since it exhausts(use up)3000j of heat that's the work input and the 1500j is the work input
efficiency=1500/3000×100
=50%
I'm only adept in atomic makeup but my guess would be 13 electrons since they have a negative charge and protons have a positive one.