The correct option is: (E) It is plausible that the percent of all people living in the region who regularly use sunscreen is 18.5%.
<u>Step-by-step explanation:</u>
The margin of error is a statistic expressing the amount of random sampling error that occurred due to miscalculation and survey results. The margin error is usually a small amount of error.
Generally 5% of margin of error is common and acceptable. When the percentage of the margin of error increases, the confidence in the report result will be reduced.
The recent survey reveals that 19% of the people living in a certain region regularly use sunscreen when going outdoors. The permissible margin of error in this survey is 1%.
Probably the percentage of people using sunscreen in the particular region will be <u>18.5%.
</u>
I'm assuming you're looking to find the expanded form of the number?
This number is in scientific notation. The easiest way to convert it to a normal number is to move the decimal place 14 to the right. I've attached a picture showing how to do this. You should get 630,000,000,000,000
There's a faster way to do this - notice that you need to move the decimal 14 to the right, and there's one number already after the decimal place. Therefore, 13 places will be filled with zeros. So, just write out 63 and add 13 zeros.
For more general help on scientific notation, check out these videos: https://www.khanacademy.org/math/pre-algebra/pre-algebra-exponents-radicals/pre-algebra-scientific-notation/v/scientific-notation-old
Hope that helps! Feel free to message me or leave a comment if I can clarify anything :)
Answer:
b = 33m is the answer
Step-by-step explanation:
a = 44m
b = ?
c = 55m
According to the Pythagoras theorem,
a² + b² = c²
44² + b² = 55²
1936 + b² = 3025
b² = 3025 - 1936
b² = 1089
b = 33m
∴ b = 33m is the length of the missing leg.
Answer:
Lines RQ and SP are perpendicular to SR
Step-by-step explanation:
SR are parallel to PQ so that means that RQ and SP are perpendicular to SR
Answer:
![A^{-1}=\left[ \begin{array}{ccc} \frac{1}{9} & \frac{4}{27} & - \frac{2}{27} \\\\ \frac{8}{9} & \frac{5}{27} & \frac{11}{27} \\\\ - \frac{4}{9} & \frac{2}{27} & - \frac{1}{27} \end{array} \right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B1%7D%7B9%7D%20%26%20%5Cfrac%7B4%7D%7B27%7D%20%26%20-%20%5Cfrac%7B2%7D%7B27%7D%20%5C%5C%5C%5C%20%5Cfrac%7B8%7D%7B9%7D%20%26%20%5Cfrac%7B5%7D%7B27%7D%20%26%20%5Cfrac%7B11%7D%7B27%7D%20%5C%5C%5C%5C%20-%20%5Cfrac%7B4%7D%7B9%7D%20%26%20%5Cfrac%7B2%7D%7B27%7D%20%26%20-%20%5Cfrac%7B1%7D%7B27%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step-by-step explanation:
We want to find the inverse of ![A=\left[ \begin{array}{ccc} 1 & 0 & -2 \\\\ 4 & 1 & 3 \\\\ -4 & 2 & 3 \end{array} \right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7D%201%20%26%200%20%26%20-2%20%5C%5C%5C%5C%204%20%26%201%20%26%203%20%5C%5C%5C%5C%20-4%20%26%202%20%26%203%20%5Cend%7Barray%7D%20%5Cright%5D)
To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be inverse matrix.
So, augment the matrix with identity matrix:
![\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 4&1&3&0&1&0 \\\\ -4&2&3&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%26-2%261%260%260%20%5C%5C%5C%5C%204%261%263%260%261%260%20%5C%5C%5C%5C%20-4%262%263%260%260%261%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 1 multiplied by 4 from row 2
![\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ -4&2&3&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%26-2%261%260%260%20%5C%5C%5C%5C%200%261%2611%26-4%261%260%20%5C%5C%5C%5C%20-4%262%263%260%260%261%5Cend%7Barray%7D%5Cright%5D)
- Add row 1 multiplied by 4 to row 3
![\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ 0&2&-5&4&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%26-2%261%260%260%20%5C%5C%5C%5C%200%261%2611%26-4%261%260%20%5C%5C%5C%5C%200%262%26-5%264%260%261%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 2 multiplied by 2 from row 3
![\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ 0&0&-27&12&-2&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%26-2%261%260%260%20%5C%5C%5C%5C%200%261%2611%26-4%261%260%20%5C%5C%5C%5C%200%260%26-27%2612%26-2%261%5Cend%7Barray%7D%5Cright%5D)
![\left[ \begin{array}{ccc|ccc}1&0&-2&1&0&0 \\\\ 0&1&11&-4&1&0 \\\\ 0&0&1&- \frac{4}{9}&\frac{2}{27}&- \frac{1}{27}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%26-2%261%260%260%20%5C%5C%5C%5C%200%261%2611%26-4%261%260%20%5C%5C%5C%5C%200%260%261%26-%20%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B2%7D%7B27%7D%26-%20%5Cfrac%7B1%7D%7B27%7D%5Cend%7Barray%7D%5Cright%5D)
- Add row 3 multiplied by 2 to row 1
![\left[ \begin{array}{ccc|ccc}1&0&0&\frac{1}{9}&\frac{4}{27}&- \frac{2}{27} \\\\ 0&1&11&-4&1&0 \\\\ 0&0&1&- \frac{4}{9}&\frac{2}{27}&- \frac{1}{27}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%260%26%5Cfrac%7B1%7D%7B9%7D%26%5Cfrac%7B4%7D%7B27%7D%26-%20%5Cfrac%7B2%7D%7B27%7D%20%5C%5C%5C%5C%200%261%2611%26-4%261%260%20%5C%5C%5C%5C%200%260%261%26-%20%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B2%7D%7B27%7D%26-%20%5Cfrac%7B1%7D%7B27%7D%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 3 multiplied by 11 from row 2
![\left[ \begin{array}{ccc|ccc}1&0&0&\frac{1}{9}&\frac{4}{27}&- \frac{2}{27} \\\\ 0&1&0&\frac{8}{9}&\frac{5}{27}&\frac{11}{27} \\\\ 0&0&1&- \frac{4}{9}&\frac{2}{27}&- \frac{1}{27}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%260%260%26%5Cfrac%7B1%7D%7B9%7D%26%5Cfrac%7B4%7D%7B27%7D%26-%20%5Cfrac%7B2%7D%7B27%7D%20%5C%5C%5C%5C%200%261%260%26%5Cfrac%7B8%7D%7B9%7D%26%5Cfrac%7B5%7D%7B27%7D%26%5Cfrac%7B11%7D%7B27%7D%20%5C%5C%5C%5C%200%260%261%26-%20%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B2%7D%7B27%7D%26-%20%5Cfrac%7B1%7D%7B27%7D%5Cend%7Barray%7D%5Cright%5D)
As can be seen, we have obtained the identity matrix to the left. So, we are done.