<u>Answer</u>
3 Ohms
<u>Explanation</u>
when the resistors are in series, the resistance in the circuit increases. For example, if two resistors, R1 and R2 are in series, the combined resistance is R1+R2.
When connected in parallel, the total resistance is the reciprocal of (1/R1 + 1/R2)
In this case the resistors are in parallel.
Total resistance = (1/12 + 1/4)⁻¹
= (1/3)⁻¹
= 3 Ohms
First we find the energy level with the following formula, where a is the energy level, n1 is the final energy level, n2 is the starting energy level and r is Rydberg's constant in Joules

We insert the values


The wavelength is found with this formula, where h is Planck's constant and c is the speed of light

Finally we insert the values

Which is the same as 93.8 nm
Answer:
Its inductance L = 166 mH
Explanation:
Since a current, I = 0.698 A is obtained when a voltage , V = 5.62 V is applied, the resistance of the coil is gotten from V = IR
R = V/I = 5.62/0.698 = 8.052 Ω
Since we have a current of I' = 0.36 A (rms) when a voltage of V' = 35.1 V (rms) is applied, the impedance Z of the coil is gotten from
V₀' = I₀'Z where V₀ = maximum voltage = √2V' and I₀ = maximum current = √2I'
Z = V'/I' = √2 × 35.1 V/√2 × 0.36 V = 97.5 Ω
WE now find the reactance X of the coil from
Z² = X² + R²
X = √(Z² - R²)
= √(97.5² - 8.05²)
= √(9506.25 - 64.8025)
= √9441.4475
= 97.17 Ω
Now, the reactance X = 2πfL where f = frequency of generator = 93.1 Hz and L = inductance of coil.
L = X/2πf
= 97.17/2π(93.1 Hz)
= 97.17 Ω/584.965 rad/s
= 0.166 H
= 166 mH
Its inductance L = 166 mH
One of the many random useless factoids that I carry around
in my head is the factoid that 60 miles per hour is equivalent
to exactly 88 feet per second.
So in three seconds at that speed, you would cover exactly
(3 x 88) = 264 feet.