Answer:
The intensity increased by a factor of 158489
Explanation:
Given that,
Sound level = 95.0 dB
Sound level = 43.0 dB
Frequency = 10000 Hz
We need to calculate the ratio of sound intensity
Using formula of sound level

Put the value into the formula
...(I)
.....(II)
Subtracting these equations


Taking inverse log

Hence, The intensity increased by a factor of 158489
<span>this may help you
As far as the field goes, the two charges opposite each other cancel!
So E = kQ / d² = k * Q / (d/√2)² = 2*k*Q / d² ◄
and since k = 8.99e9N·m²/C²,
E = 1.789e10N·m²/C² * Q / d² </span>
<span>Generally speaking, the level of molecular motion is highest in gases, where molecules move around freely in space, bouncing off of each other, and lowest in solids, where molecules are bound together in a rigid structure. As such, the answer would be A; "the molecules in air move more than the molecules in wood".</span>
Answer:
Frequency = 1,550Hz
Explanation:
To solve this we can use the equation:
(frequency = velocity/wavelength).
We are given the information that the wavelength is 22cm and the speed is 340m/s. The first step is to make sure everything is in the correct units (SI units), and to convert them if needed. The SI Units for velocity and wavelength are m/s and m respectively. This means we need to convert 22cm into meters, which we can do by dividing by 100, (as there are 100cm in a meter). 22/100 = 0.22m
Now we can substitute these values into the formula and calculate to solve:

Simplify to 3 significant figures:
f = 1,550Hz
(Which I believe is just below a G6 if you were interested)
Hope this helped!