The velocity of penguin as he ends where he started was 0 m/s.
<h3>What is displacement?</h3>
Displacement is the length of straight line joining the initial and final position of the body.
Given is a penguin who waddled 8 m uphill before sliding back down to its friends in 2 seconds.
We know that the velocity is the rate of change of displacement with respect to time. Mathematically -
v = dx/dt
dx = v dt
∫dx = ∫v dt
Δx = vΔt
v = Δx/Δt
Now, the displacement of the penguin will be = Δx = 8 - 8 = 0
Then, its velocity will be -
v = 0/Δt = 0
Therefore, the velocity of penguin as he ends where he started was 0 m/s.
To solve more questions on kinematics, visit the link below-
brainly.com/question/27200847
#SPJ1
We know, F = k * q₁ * q₂ / r²
Substitute the known values,
F = 9 * 10⁹ * 5 * 7 / (1.2)²
F = 315 * 10⁹ / 1.44
F = 218.75 * 10⁹ N
F = 2.1875 * 10¹¹ N [ Final Answer ]
Hope this helps!
Answer:



Explanation:
<u>Simple Pendulum</u>
It's a simple device constructed with a mass (bob) tied to the end of an inextensible rope of length L and let swing back and forth at small angles. The movement is referred to as Simple Harmonic Motion (SHM).
(a) The angular frequency of the motion is computed as

We have the length of the pendulum is L=0.81 meters, then we have


(b) The total mechanical energy is computed as the sum of the kinetic energy K and the potential energy U. At its highest point, the kinetic energy is zero, so the mechanical energy is pure potential energy, which is computed as

where h is measured to the reference level (the lowest point). Please check the figure below, to see the desired height is denoted as Y. We know that

And

Solving for Y



The potential energy is


The mechanical energy is, then


(c) The maximum speed is achieved when it passes through the lowest point (the reference for h=0), so the mechanical energy becomes all kinetic energy (K). We know

Equating to the mechanical energy of the system (M)

Solving for v

