Answer:
So that each cell has all of the information.
Explanation:
Please brainliest!
Answer:
he organisms that can fix energy from inorganic sources into organic molecules are called autotrophs. Organisms that cannot make their food from inorganic sources but depend on energy rich organic molecules synthesized by autotrophs for their energy needs are called heterotrophs.
The only source of energy for all the ecosystems of the earth is the sun. Light falling on the plants is trapped by the producers or autotrophs in the presence of chlorophyll and is used in synthesizing the organic food called glucose by the process of photosynthesis. By photosynthesis radiant energy of sunlight is transformed into potential energy of food. A part of this energy is trapped by the producers while the rest of the energy is dissipated. The remaining part of energy which is used in the synthesis of plant biomass is called photosynthate which is then available to the next trophic level in the food chain that is the consumers or heterotrophs. In an ecosystem there is a unidirectional flow of energy.
Answer:
Cross-bridges would form in the absence of an action potential from a motor neuron.
Explanation:
The injected calcium ions would bind to troponin. Troponin would make tropomyosin move away from the myosin-binding sites on actin. The presence of free binding sites on the actin would be followed by the contraction cycle. This would include hydrolysis of ATP to energize myosin heads and binding of these heads to actin to form cross-bridges. Therefore, cross-bridge formation would occur without any action potential if calcium ions are injected directly into the muscle.
Answer:
Skeletal muscles contribute to maintaining temperature homeostasis in the body by generating heat. Muscle contraction requires energy and produces heat as a byproduct of metabolism.
Explanation:
Answer:
The answer must be c: natural selection
Explanation:
All the other answers only help rappid food production which will lessen the use of natural selection over time.