The Sun's outer gases extend far beyond the photosphere (Figure 6). Because they are transparent to most visible radiation and emit only a small amount of light, these outer layers are difficult to observe. The region of the Sun's atmosphere that lies immediately above the photosphere is called the chromosphere.
1. In the heart, an action potential originates in the (E) sinoatrial node.
The cardiac action potential is a term referring to the change in the membrane potential of heart cells causing the heart to contract. Cardiac action potentials are created by a group of specialized cells capable of generating automatic action potentials and are located in the right atrium of the heart. These cells are called sinoatrial node and sometimes are referred to as the natural pacemaker of the heart. This characterization originates from the fact that sinoatrial node continuously provides action potential and sets the rhythm of the heart function.
2. The sequence of travel by an action potential through the heart is (A) sinoatrial node, atrioventricular node, atrioventricular bundle, bundle branches, Purkinje fibers.
As explained above, the cardiac action potential originates from the sinoatrial node. This action potential then travels through the atrioventricular node, which belongs to the electrical conduction system of the heart and is located between the atria and the ventricles. It is responsible for the electrical connection between the right atrium and the right ventricle. The action potential then travels to the atrioventricular bundle (or bundle of His), another part of the electrical conduction system of the heart. The atrioventricular bundle transmits the electrical impulses from the atrioventricular node to the bundle branches. The bundle branches then send the signal to the Purkinje fibers which send the electrical impulses to the ventricles, causing them to contract.
3. The correct answer is A.
The generation of an action potential in the sinoatrial node causes the contraction of the atria. When the action potential passes from the sinoatrial node to the atrioventricular node, it slows down. This causes the transport of the electrical impulse from the atria to the ventricles to slow down. This delay enables the blood (from the contraction of the atria) to fill the ventricles before their contraction.
4. This statement is true.
The interventricular septum is a structure which divides the two ventricles of the heart and it is composed of two branches, the left bundle and the right bundle branch. When the action potential reaches the interventricular septum, it then travels to the apex of the heart from where it travels upwards along the walls of the ventricles and the ventricular contraction begins.
5. This statement is true.
The bundle branches gradually become Purkinje fibers located in the interior of the ventricular walls. Purkinje fibers are specialized cells and are responsible for conducting cardiac action potentials from the bundle branches to the ventricular walls. This signal transduction causes the muscle of the ventricular walls to contract.
The answers is D because it needs something to survive
The anterior rami of the brachial plexus are the continuations of the anterior rami of spinal nerves C5-T1 . These rami emerge from the intervertebral foramina and travel through the neck. The five rami unite to form the superior, middle, and inferior trunks in the posterior triangle of the neck. Nerves C5, C6 unite to form the superior trunk; nerve C7 remains as the middle trunk; and nerves C8,T1 unite to form the inferior trunk. Portions of each trunk divide deep to the clavicle into an anterior and a posterior division. These primarily contain axons that innervate the anterior and posterior parts of the upper limb. Upon reaching the axilla, they converge to form three cords.