Answer:
Part 1) The length of the longest side of ∆ABC is 4 units
Part 2) The ratio of the area of ∆ABC to the area of ∆DEF is 
Step-by-step explanation:
Part 1) Find the length of the longest side of ∆ABC
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional and this ratio is called the scale factor
The ratio of its perimeters is equal to the scale factor
Let
z ----> the scale factor
x ----> the length of the longest side of ∆ABC
y ----> the length of the longest side of ∆DEF
so

we have


substitute

solve for x


therefore
The length of the longest side of ∆ABC is 4 units
Part 2) Find the ratio of the area of ∆ABC to the area of ∆DEF
we know that
If two figures are similar, then the ratio of its areas is equal to the scale factor squared
Let
z ----> the scale factor
x ----> the area of ∆ABC
y ----> the area of ∆DEF

we have

so


therefore
The ratio of the area of ∆ABC to the area of ∆DEF is 
3/8. Divide 3/4 by two to get 3/8.
Answer:
So, the times the ball will be 48 feet above the ground are t = 0 and t = 2.
Step-by-step explanation:
The height h of the ball is modeled by the following equation

The problem want you to find the times the ball will be 48 feet above the ground.
It is going to be when:





We can simplify by 16t. So

It means that
16t = 0
t = 0
or
t - 2 = 0
t = 2
So, the times the ball will be 48 feet above the ground are t = 0 and t = 2.
he solution set is
{
x
∣
x
>
1
}
.
Explanation
For each of these inequalities, there will be a set of
x
-values that make them true. For example, it's pretty clear that large values of
x
(like 1,000) work for both, and negative values (like -1,000) will not work for either.
Since we're asked to solve a "this OR that" pair of inequalities, what we'd like to know are all the
x
-values that will work for at least one of them. To do this, we solve both inequalities for
x
, and then overlap the two solution set