Answer:
See explanation
Step-by-step explanation:
Let x be the number of simple arrangements and y be the number of grand arrangements.
1. The florist makes at least twice as many of the simple arrangements as the grand arrangements, so

2. A florist can make a grand arrangement in 18 minutes
hour, then he can make y arrangements in
hours.
A florist can make a simple arrangement in 10 minutes
hour, so he can make x arrangements in
hours.
The florist can work only 40 hours per week, then

3. The profit on the simple arrangement is $10, then the profit on x simple arrangements is $10x.
The profit on the grand arrangement is $25, then the profit on y grand arrangements is $25y.
Total profit: $(10x+25y)
Plot first two inequalities and find the point where the profit is maximum. This point is point of intersection of lines
and 
But this point has not integer coordinates. The nearest point with two integer coordinates is (126,63), then the maximum profit is

Using the dot product:
For any vector x, we have
||x|| = √(x • x)
This means that
||w|| = √(w • w)
… = √((u + z) • (u + z))
… = √((u • u) + (u • z) + (z • u) + (z • z))
… = √(||u||² + 2 (u • z) + ||z||²)
We have
u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37
z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74
u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46
and so
||w|| = √((2√37)² + 2•46 + (√74)²)
… = √(4•37 + 2•46 + 74)
… = √314 ≈ 17.720
Alternatively, without mentioning the dot product,
w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩
and so
||w|| = √((-5)² + 17²) = √314 ≈ 17.720
Answer:
This cannot be solved but it can be simplified
first we open the bracket
so we have
a²- abx/x = 2/3
next we cross multiply so it will be 3(a² - abx) = 2x
we get
3a² - 3abx = 2x
Next we factorise so we can get
3a(a-bx) =2x
I dont know what exactly you where asked but I hop this helps
Where’s the answer choices ??
It causes very low gravity but it still has a bit of gravity. Hope it helped! ;-) <3