In nuclear fission heavier elements are split to make lighter elements whilst releasing energy. An atom, its nucleus to be more specific, is bombarded with neutrons. The nucleus becomes unstable and it starts to split/decay. It creates the fusion products. Neutrons and lighter elements are released; the neutrons from the nuclei of the atom(s) being split.
Answer: 0.4533mol/L
Explanation:
Molar Mass of CaCO3 = 40+12+(16x3) = 40+12+48 = 100g/mol
68g of CaCO3 dissolves in 1.5L of solution.
Xg of CaCO3 will dissolve in 1L i.e
Xg of CaCO3 = 68/1.5 = 45.33g/L
Molarity = Mass conc.(g/L) / molar Mass
Molarity = 45.33/100 = 0.4533mol/L
Answer:
1.67 gradius Celcius
Explanation:
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!
Answer:
dium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the Equipartition theorem).
Explanation:
Answer:
51.2g of CO2
Explanation:
The first step is to balance the reaction equation as shown in the solution attached. Without balancing the reaction equation, one can never obtain the correct answer! Then obtain the masses of octane reacted and carbon dioxide produced from the stoichiometric equation. After that, we now compare it with what is given as shown in the image attached.