Answer:
Mass = 51 g
Explanation:
Given data:
Mass of nitrogen = 41.93 g
Mass of ammonia formed = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Number of moles of nitrogen:
Number of moles = mass/molar mass
Number of moles = 41.93 g/ 28 g/mol
Number of moles = 1.5 mol
now we will compare the moles of nitrogen and ammonia.
N₂ : NH₃
1 : 2
1.5 : 2/1×1.5 = 3 mol
Mass of ammonia formed:
Mass = number of moles × molar mass
Mass = 3 mol × 17 g/mol
Mass = 51 g
Answer:
D.
They have a positive charge and are present in the nucleus of an atom along with the neutrons.
explanation:
Protons have a positive charge.
Answer: In octet state.
Explanation: For noble gases they are stable in state since their outer shell contain fully occupied having 8 electrons.
Answer:
0.136g
Explanation:
A student dissolved 5.00 g of Co(NO3)2 in enough water to make 100. mL of stock solution. He took 4.00 mL of the stock solution and then diluted it with water to give 275. mL of a final solution. How many grams of NO3- ion are there in the final solution?

Initial mole of Co(NO3)2 

Mole of Co(NO3)2 in final solution

Mole of NO3- in final solution = 2 x Mole of Co(NO3)2

Mass of NO3- in final solution is mole x Molar mass of NO3

Ca(OH)2(aq) + 2HCl(aq)------> CaCl2(aq) + 2H2O(l) ΔH-?
CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), Δ<span>H = -186 kJ
</span>
CaO(s) + H2O(l) -----> Ca(OH)2(s), Δ<span>H = -65.1 kJ
</span>
1) Ca(OH)2 should be reactant, so
CaO(s) + H2O(l) -----> Ca(OH)2(s)
we are going to take as
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
2) Add 2 following equations
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
<span><u>CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), and ΔH = -186 kJ</u>
</span>Ca(OH)2(s)+CaO(s) + 2HCl(aq)--->CaO(s) + H2O(l)+CaCl2(aq) + H2O(l)
Ca(OH)2(s)+ 2HCl(aq)---> H2O(l)+CaCl2(aq) + H2O(l)
By addig these 2 equation, we got the equation that we are needed,
so to find enthalpy of the reaction, we need to add enthalpies of reactions we added.
ΔH=65.1 - 186 ≈ -121 kJ