Answer:
$3.06
Step-by-step explanation:
1 kg = $27.54
27.54/9 kilogram
................................................
The answer is 15.
Ok, I'm going to start off saying there is probably an easier way of doing this that's right in front of my face, but I can't see it so I'm going to use Heron's formula, which is A=√[s(s-a)(s-b)(s-c)] where A is the area, s is the semiperimeter (half of the perimeter), and a, b, and c are the side lengths.
Substitute the known values into the formula:
x√10=√{[(x+x+1+2x-1)/2][({x+x+1+2x-1}/2)-x][({x+x+1+2x-1}/2)-(x+1)][({x+x+1+2x-1}/2)-(2x-1)]}
Simplify:
<span>x√10=√{[4x/2][(4x/2)-x][(4x/2)-(x+1)][(4x/2)-(2x-1)]}</span>
<span>x√10=√[2x(2x-x)(2x-x-1)(2x-2x+1)]</span>
<span>x√10=√[2x(x)(x-1)(1)]</span>
<span>x√10=√[2x²(x-1)]</span>
<span>x√10=√(2x³-2x²)</span>
<span>10x²=2x³-2x²</span>
<span>2x³-12x²=0</span>
<span>2x²(x-6)=0</span>
<span>2x²=0 or x-6=0</span>
<span>x=0 or x=6</span>
<span>Therefore, x=6 (you can't have a length of 0).</span>
If you assign variables to the problem, it can make things a lot simpler. Lets say chairs are x and tables are y. Therefore you have:
2x+6y=40
5x+3y=25
Now you can isolate the variable of one equation and put it into another (it doesn't matter which. I'm going to manipulate the top equation to plug into the bottom one).
2x=40-6y
x=20-3y
Now I plug into bottom equatioin:
5(20-3y) + 3y=25
100-15y+3y=25
100-12y=25
-12y=-75
y=$6.25
Now you can plug in y in either equation to get x.
2x+6(6.25)=40
37.5+2x=40
2x=2.5
x=1.25
So it costs $6.25 for each table and $1.25 for each chair. If you think about it, it would make sense for the table to cost more for the chair.
Answer:
Annie's Orange Grove
Step-by-step explanation:
* you need to find out how much each pound of oranges cost at both orchards.
* to do so you take the total amount of money and divide it by the number of pounds you get.
1) 7.25 ÷ 20 = .36
2) 5 ÷12 = .4
* as you can see .36 is less than .4 and therefore is the better deal.