Answer:
(1)
(2)
If we divide equations (2) and (1) we got:
![\frac{r^5}{r^4}= \frac{1}{15}](https://tex.z-dn.net/?f=%20%5Cfrac%7Br%5E5%7D%7Br%5E4%7D%3D%20%5Cfrac%7B1%7D%7B15%7D)
And then ![r= \frac{1}{15}](https://tex.z-dn.net/?f=%20r%3D%20%5Cfrac%7B1%7D%7B15%7D)
And then we can find the value
and we got from equation (1)
![a_1 = \frac{15}{r^4} = \frac{15}{(\frac{1}{15})^4} =759375](https://tex.z-dn.net/?f=%20a_1%20%3D%20%5Cfrac%7B15%7D%7Br%5E4%7D%20%3D%20%5Cfrac%7B15%7D%7B%28%5Cfrac%7B1%7D%7B15%7D%29%5E4%7D%20%3D759375)
And then the general term for the sequence would be given by:
![a_n = 759375 (\frac{1}{15})^n-1 , n=1,2,3,4,...](https://tex.z-dn.net/?f=%20a_n%20%3D%20759375%20%28%5Cfrac%7B1%7D%7B15%7D%29%5En-1%20%2C%20n%3D1%2C2%2C3%2C4%2C...%20)
And the best option would be:
C) a1=759,375; an=an−1⋅(1/15)
Step-by-step explanation:
the general formula for a geometric sequence is given by:
![a_n = a_1 r^{n-1}](https://tex.z-dn.net/?f=%20a_n%20%3D%20a_1%20r%5E%7Bn-1%7D)
For this case we know that ![a_5 = 15, a_6 = 1](https://tex.z-dn.net/?f=%20a_5%20%3D%2015%2C%20a_6%20%3D%201)
Then we have the following conditions:
(1)
(2)
If we divide equations (2) and (1) we got:
![\frac{r^5}{r^4}= \frac{1}{15}](https://tex.z-dn.net/?f=%20%5Cfrac%7Br%5E5%7D%7Br%5E4%7D%3D%20%5Cfrac%7B1%7D%7B15%7D)
And then ![r= \frac{1}{15}](https://tex.z-dn.net/?f=%20r%3D%20%5Cfrac%7B1%7D%7B15%7D)
And then we can find the value
and we got from equation (1)
![a_1 = \frac{15}{r^4} = \frac{15}{(\frac{1}{15})^4} =759375](https://tex.z-dn.net/?f=%20a_1%20%3D%20%5Cfrac%7B15%7D%7Br%5E4%7D%20%3D%20%5Cfrac%7B15%7D%7B%28%5Cfrac%7B1%7D%7B15%7D%29%5E4%7D%20%3D759375)
And then the general term for the sequence would be given by:
![a_n = 759375 (\frac{1}{15})^n-1 , n=1,2,3,4,...](https://tex.z-dn.net/?f=%20a_n%20%3D%20759375%20%28%5Cfrac%7B1%7D%7B15%7D%29%5En-1%20%2C%20n%3D1%2C2%2C3%2C4%2C...%20)
And the best option would be:
C) a1=759,375; an=an−1⋅(1/15)