Answer:
1.) No ;
2.) - 0.931
3.) 0.1785
Step-by-step explanation:
Given :
μ = 84.3 ; xbar = 81.9 ; s = 17.3
H0 : μ = 84.3
H1 : μ < 84.3
The test statistic :
(xbar - μ) ÷ (s/√(n))
(81.9 - 84.3) / (17.3/√45)
-2.4 / 2.5789317
= - 0.9306
= - 0.931
Using the test statistic, we could obtain the Pvalue : df = n - 1 ; df = 45 - 1 = 44
Using the Pvalue calculator :
Pvalue(-0.9306, 44) = 0.1785
Using α = 0.05
The Pvalue > α
Then we fail to reject H0; and conclude that there is no significant evidence to support the claim that the mean waiting time is less than 84.3
Answer:
That is igneous
Step-by-step explanation:
Let the number of green apples bought be x
Green apples = x
Red apples = 2x
Yellow apples = 1/3 (2x) = 2/3 x
Total = 22 apples
x + 2x + 2/3 x = 22
11/3 x = 22
11x = 66
x = 6
Green apples = x = 6
Red apples = 2x = 2(6) = 12
Yellow apples = 2/3 (2x) = 2/3 (6) = 4
Answer: Green = 6, Red = 12, Yellow = 4
Given that the bacteria has been modeled by the function:
r(t)=(450.267)e^(1.12567t)
thus the number of bacteria after 3 hours will be:
r(3)=450.267e^(1.12567×3)
r(3)=13,185.20623
The number of bacteria after 3 hours will be:
13, 185.20623