Answer:
(x - 1) (x + 1) (x - 4) (x + 4)
Step-by-step explanation:
actor the following:
x^4 - 17 x^2 + 16
x^4 - 17 x^2 + 16 = (x^2)^2 - 17 x^2 + 16:
(x^2)^2 - 17 x^2 + 16
The factors of 16 that sum to -17 are -1 and -16. So, (x^2)^2 - 17 x^2 + 16 = (x^2 - 1) (x^2 - 16):
(x^2 - 1) (x^2 - 16)
x^2 - 16 = x^2 - 4^2:
(x^2 - 1) (x^2 - 4^2)
Factor the difference of two squares. x^2 - 4^2 = (x - 4) (x + 4):
(x - 4) (x + 4) (x^2 - 1)
x^2 - 1 = x^2 - 1^2:
(x^2 - 1^2) (x - 4) (x + 4)
Factor the difference of two squares. x^2 - 1^2 = (x - 1) (x + 1):
Answer: (x - 1) (x + 1) (x - 4) (x + 4)
Answer:
10
Step-by-step explanation:
48-20=28
28-18=10
that is how I see it at least
Answer: 
Step-by-step explanation:
Given
The area of the base is 
height of the triangular prism is 
The volume of a triangular prism is 
The volume of given Prism is

The volume of the triangular prism is 
Answer:
Final answer is
.
Step-by-step explanation:
Given problem is
.
Now we need to simplify this problem.
![\sqrt[3]{x}\cdot\sqrt[3]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D)
Apply formula
![\sqrt[n]{x^p}\cdot\sqrt[n]{x^q}=\sqrt[n]{x^{p+q}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5Ep%7D%5Ccdot%5Csqrt%5Bn%5D%7Bx%5Eq%7D%3D%5Csqrt%5Bn%5D%7Bx%5E%7Bp%2Bq%7D%7D)
so we get:
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=\sqrt[3]{x^{1+2}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3D%5Csqrt%5B3%5D%7Bx%5E%7B1%2B2%7D%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=\sqrt[3]{x^{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3D%5Csqrt%5B3%5D%7Bx%5E%7B3%7D%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=x](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3Dx)
Hence final answer is
.
We can only see one graph here